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Abstract
The quality factor Q is a dimensionless measure of the energy loss per cycle of a 
wave field, and a proper understanding of this factor is important in a variety of fields, 
from seismology, geophysical prospecting to electrical science. Here, the focus is on 
viscoelasticity. When interpreting experimental values, several factors must be taken 
into account, in particular the shape of the medium (rods, bars or unbounded media) 
and the fact that the measurements are made on stationary or propagating modes. From 
a theoretical point of view, the expressions of Q may differ due to different definitions, 
the spatial dimension and the inhomogeneity of the wave, i.e. the fact that the vectors of 
propagation (or wavenumber) and attenuation do not point in the same direction. We show 
the difference between temporal and spatial Q, the relationships between compressional 
and shear Q, the dependence on frequency, the case of poro-viscoelasticity and anisotropy, 
the effect of inhomogeneous waves and various loss mechanisms, and consider the analogy 
between elastic and electromagnetic waves. We discuss physical theories describing 
relaxation peaks, bounds on Q and experiments showing the behaviour of Q as a function 
of frequency, saturation and pore pressure. Finally, we propose an application example 
where Q can be used to estimate porosity and saturation.
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Article Highlights

• We review the concept of quality factor, including experimental and theoretical 
research published during the last 60 years

• We point out many cases that lead authors to misinterpret Q depending on many factors 
such different definitions, dimensionality of the medium, type of wave and the case of 
porous media

• We consider the effects of anisotropy and thermo-elasticity, bounds in the case of 
composite media, and the analogy with electromagnetism

• Finally, we propose an application, where Q can be used to estimate porosity and saturation

1 Introduction

The term Q was first introduced in 1914 to describe the ratio of reactance to effective resist-
ance of a coil and later extended to mechanical and acoustic resonators as well as quantum 
systems such as spectral lines and particle resonances (Green 1955). A related concept is 
the logarithmic decrement �∕Q , defined as ln(max0∕max1) , the natural logarithm of the 
ratio of two consecutive maxima in a damped wave train (Green 1955). Another form is the 
loss tangent, which corresponds to the dissipation factor 1/Q.

An overview for geophysics was published in Knopoff (1964) (see also Qadrouh et al. 2024). 
Seismic attenuation has a decisive influence on the signal and is therefore important for the 
synthesis of the waveform. It is parameterized by the quality factor Q, which accounts for the 
total energy loss of the seismic pulse during propagation and is a key parameter for extracting 
information about the subsurface layers, such as porosity, permeability, fluid saturation and 
viscosity (Carcione 2022; Gurevich and Carcione 2022). In electrical science, the quality 
factor Q of a circuit is important in electromagnetic waveguides and radio-frequency cavities. 
It measures the “goodness" or quality of a resonant circuit. A higher value corresponds to a 
narrow bandwidth, which is desirable in many applications (Green 1955).

The expressions for Q used for the evaluation of experiments can be different. The distinction 
between spatial and temporal quality factors, Q and QT , is important in seismology, for example, 
where the anelastic properties of free earth oscillations (or normal modes) are strictly different 
from those of teleseismic waves. In Knopoff et  al. (1964), a relationship between these two 
different quality factors was proposed, based on an expression that involves the group velocity 
and applies to low-loss media, i.e. media where the quality factor is much greater than 1. (In 
practice, a value greater than 10 is usually common.) In the same way, ultrasonic and resonant 
rod measurements for estimating wave attenuation in the laboratory (see Carcione 2022), 
appendices B1 and B2, respectively) give different values. In the first case, a wave travels through 
the sample in only one direction at a time; interference effects do not occur. In the second case, a 
sample is made to oscillate in one of its eigenmodes so that a standing wave is formed.

The analysis of standing and propagating waves presented here is based on a theoretical 
analysis based on an energy balance in one-dimensional space, which is given in Carcione 
(2022, Section 2.3). If �I and � are the temporal and spatial attenuation factors, exp(−�I t) 
and exp(−�x) are the standing and propagating decays, respectively, where t and x are the 
temporal and spatial variables, respectively. The analysis is usually based on mechanical 
models of viscoelasticity, such as the Maxwell, Kelvin–Voigt, Zener and Burgers models 
(Carcione 2022, Section 2) (Gurevich and Carcione 2022, Section 1) in order of complex-
ity, but this does not imply a loss of generality.
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2  Complex Modulus and Fourier Wave Kernel

Let us introduce, for simplicity, the frequency-domain viscoacoustic stress–strain 
relation in 3D space,

(see Carcione 2022,  Section  3), where � is the trace of the stress tensor, M(�) is a 
complex and frequency-dependent bulk modulus, obtained as the Fourier transform of 
the time derivative of the relaxation function (see Carcione 2022, Eq. 2.31), � is the trace 
of the strain tensor ( � = �iui ), where ui are the displacements, and � = 2�f  is the angular 
frequency, with f the frequency in Hz. The Einstein implicit summation is assumed. In 
the context of wave propagation, Eq. (1) is combined with the equations of momentum 
conservation to obtain the wave equation (Carcione 2022). Equation (1) corresponds to 
compressional or sound waves. Alternatively M can be a shear modulus � for pure SH 
waves (see Carcione 2022, Section 4.6).

It is important the concept of wave inhomogeneity (see Carcione 2022, Section 3.3.1). 
In general, we consider propagating waves whose kernel in the frequency-wavenumber 
domain (or Fourier component) is

where x is the position vector,

where � is the real wavevector, � is the attenuation vector and i =
√

−1 . When these 
vectors coincide in direction, the plane wave is called homogeneous; when these vectors 
differ in their direction (making an inhomogeneity angle � ), the plane wave is called 
inhomogeneous. In the following, we distinguish between propagating and standing waves.

Complex and frequency-dependent stiffness or moduli imply velocity dispersion 
and wave attenuation, the former being the increase of wave velocity with frequency, a 
phenomenon generally related to the strain or potential energy being complex (Carcione 
2022).

3  Spatial and Temporal Q

For the following equations, we refer to Carcione (2022),  Section  2.3). The Fourier 
component of a propagating wave is

where ki are the complex wavenumber components, and � is the real wavenumber, which 
can be different from that of a standing wave. The complex velocity is

and the phase velocity and attenuation factor are

(1)� = M�,

(2)exp[i(�t − k ⋅ x)],

(3)k = � − i�

(4)exp[i(�t − kixi)], k =

√

∑

i

k2
i
= � − i�,

(5)vc =
�

k
=

√

M

�
,
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, respectively.
For a standing wave, we have

where Ω is the complex frequency, and the wavenumber components �i are real. The 
wavenumber is � =

�

∑

i �
2
i
.

In this case, the complex velocity is

and the phase velocity and attenuation factor are

, respectively.
For both modes (propagating and standing), the spatial and temporal quality factors 

(Q and QT , respectively) have the following form

(� ≥ 0 and convention exp(+i�t) ), but they differ, because the complex velocities differ. 
For example, it can be shown that for a Kelvin–Voigt mechanical model, the relation is 
QT =

√

Q2 − 1 (Carcione and Ba 2024).

3.1  Knopoff et al. Relations

Knopoff et al. (1964) showed that the temporal and spatial quality factors are related 
as QT = (vp∕vg)Q , where vg = ��∕�� and vp = �∕� are the spatial group and phase 
velocities, respectively. Moreover, they showed that �I = vg� . In their calculations, 
they assumed low-loss media, isotropy and 1D propagation. They conclude that the 
QT ’s measured from observations of the Earth’s free vibration modes must be modified 
when compared to the Q’s at the same periods obtained from experiments with 
propagating waves. The simplest case is the dispersionless model used by Carcione 
et al. (2016) to perform seismic migration in the presence of attenuation. Indeed, in the 
absence of dispersion there is no distortion of the wave packet and the group and phase 
velocities are the same, which means that the temporal and spatial quality factors 
coincide. For instance, the pressure wave equation is p̈ = c2𝜕xxp − 2𝛾 ṗ − 𝛾2p , where p 
is the pressure, c is a velocity, � is a damping parameter and an overdot denotes time 
differentiation. It is easy to show that vc = c∕(1 − i�∕�) , vcT = c(1 + i�∕�) , vp = vg = c , 
�I = � , � = �T = �∕c and QT = Q = (�2 − �2)∕(2��).

(6)vp =
�

�
=

[

Re

(

1

vc

)]−1

and � = −�Im

(

1

vc

)

,

(7)exp[i(Ωt − �ixi)], Ω = � + i�I ,

(8)vc =
Ω

�
=

√

M

�

(9)vp =
Re(Ω)

�
= Re(vc) and �I = � Im

(

vc
)

=
�

vp
⋅ Im

(

vc
)

,

(10)
Re(M)

Im(M)
=

Re(v2
c
)

Im(v2
c
)
=

Re(Ω2)

Im(Ω2)
= −

Re(k2)

Im(k2)
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4  Other Definitions of Q

The quality factor

is the elastic energy stored in a medium divided by the energy dissipated in one period 
of the wave field. The stored energy is usually assumed to be twice the potential (strain) 
energy or alternatively the total energy ( Q according to Buchen 1971, for which the 
expressions for low-loss media are equal ( Q ≫ 1 ) (Carcione 2022,  Section  2.3.1). In 
general, and for homogeneous waves,

(Carcione 2022, Eq. 3.131). The relation between the quality factors is

(Carcione 2022, Eq. 2.128). The exact equations for the attenuation factors � are

which, despite the different expressions, are approximately the same regardless the value 
of Q.

The quality factor can also be defined as the peak or maximum potential energy divided by 
the dissipated energy (Borcherdt 2009, Eqs. 1.2.8 and 1.2.9; Mainardi 2022, Eq. 2.62). This 
definition is equivalent to Eq. (11), defined with the average strain energy when all the strain 
components are in phase (Carcione and Cavallini 1993 Eq. A.7; Carcione 2022, Eq. 4.76), i.e. 
when the peak strain energy is twice the average strain energy.

In addition, an instantaneous quality factor (IQ) can be defined (Carcione 
2022,  Section  2.12). Signals have time-varying frequencies, which are usually interpreted 
using spectrograms, wavelet transforms and the concept of instantaneous frequency (IF). This 
is the time derivative of the phase of the complex trace, which is a complex continuation of the 
real trace, where the imaginary part is the Hilbert transform of the real signal. The complex 
curve in exponential form basically separates the amplitude (envelope) from the phase. On 
the other hand, the IQ quantifies the dispersion. For instance, a Ricker wavelet propagating 
in a homogeneous lossy medium has a singularity at the peak of the envelope. The IQ shows 
a shift of this singularity, compared to the lossless case, which is related to the velocity 
dispersion, i.e. the variation of velocity with frequency.

(11)Q =
Re(v2

c
)

Im(v2
c
)

(12)Q =
[Re(vc)]

2

Im(v2
c
)

(13)Q =
1

2

�
√

1 + Q2 + Q
�

(14)
2�f

vp

�
√

1 + Q2 − Q
�

and
�f

Qvp
,
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5  Q Associated to Waves and Deformations

In generally Q is associated with wave modes, such as the P, S, extensional (axial), 
torsional and flexural waves (Carcione 2022; Carcione and Poletto 2000). The quality 
factor can also be related to deformations. The most general stress–strain relation in 
anisotropic–viscoelastic media is

where � and e are stress and strain arrays, and P(x,�) is a 6 × 6 complex frequency-
dependent stiffness tensor (Carcione 2022, Eq. 4.4). Each eigenvector (called eigenstrain) 
of the stiffness tensor defines a fundamental deformation state of the medium. We may 
write

(, Eq.  4.13), where ΛI and eI are the eigenvalues and normalized eigenvectors of P , 
respectively. The six eigenvalues—called eigenstiffnesses—represent the genuine 
viscoelastic constants.

In the isotropic case, the eigenvalues are 3� + 2� and 2 � with multiplicity 5, where 
� and � are the Lamé constants (Carcione and Cavallini 1994). The first eigenvalue is 
three times the compressibility K = � + (2∕3)� (or bulk modulus). A quality factor can 
be defined for each eigenvalue,

Wave modes are characterized by their proper complex effective stiffnesses. For instance, 
P, S and extensional waves by � + 2� , � and �(3� + 2�)∕(� + �) , i.e. the P-wave, shear 
and Young moduli (Mavko et al. 2020, Table 2.1.1, p. 39), respectively, and similarly to 
Eq. (17) we may define QP , QS and QE . All these quality factors are related. Approximately 
(low-loss media),

(Gurevich and Carcione 2022, Eq. 1.2.37), where QK is the compressibility quality factor 
related to K = � + 2�∕3 , � is the P to S velocity ratio at some finite frequency and n is the 
space dimension. For n = 1 there is no shear wave and QP = QK . Similarly,

and

(Mavko et al. 2020, Eq. 3.8.19), where � is a reference Poisson ratio (Mavko et al. 2020, 
Table 2.1.1).

(15)� = P ⋅ e, (�I = pIJeJ),

(16)P =

6
∑

I=1

ΛI eI ⊗ eI ,

(17)QI =
Re(ΛI)

Im(ΛI)
, I = 1,… , 6.

(18)�2
(

1

QP

−
1

QK

)

= 2(1 − 1∕n)

(

1

QS

−
1

QK

)

(19)
(1 − �)(1 − 2�)

QP

=
1 + �

QE

−
2(2 − �)

QS

(20)
3

QE

=
1 − 2�

QK

+
2(1 + �)

QS
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The quality factor associated with dilatational deformations, which is related to K 
and involved in the stress–strain relationship, is physical in nature. The relationships 
(18–20) do not apply to the poroelastic (Biot) case, where the damping mechanism is 
essentially kinetic in nature and related to the differential motion between the grains and 
the viscous saturating fluid. In the absence of viscosity, there is no wave loss (Gurevich 
and Carcione 2022, Section 2.3). Figure 1 shows the dissipation factors corresponding 
to the different wave modes and bulk dilatation K, where vc are complex and frequency-
dependent Biot velocities (Carcione 2022, Section 7.9), so that

and

As can be seen the compressibility attenuation has no physical meaning when the 
expression QK = KR∕KI is used, where R and I denote the real and imaginary parts. This 
is because this expression for Q is defined from the strain energy in the energy balance 
(Carcione and Cavallini 1993).

K = �

[

v2
c
(P) −

4

3
v2
c
(S)

]

Y = �v2
c
(S)

[

3v2
c
(P) − 4v2

c
(S)

v2
c
(P) − v2

c
(S)

]

Fig. 1  Dissipation factors corresponding to different wave modes and bulk modulus K 
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6  Effect of the Wave Inhomogeneity

Carcione et al. (2020) compare two seemingly dissimilar expressions for the quality factor 
of inhomogeneous plane waves in viscoelastic media, where Q is defined as twice the strain 
energy to the dissipated energy. The two expressions are given in Eqs. 3.125 and 4.198 in 
Carcione (2022), i.e.

and

, respectively, where the different quantities are defined in Carcione (2022, Sections 3.4.1 
and 4.7.4). Those expressions which correspond to the isotropic and anisotropic cases, 
respectively, with the second equation being associated with the wave loss in symmetry 
planes of orthorhombic media. The first expression is obtained from strain and dissipation 
energies of Buchen (1971) (B), and the second expression uses the equations developed by 
Carcione and Cavallini (1993) (CV). Both expressions result in the same Q for P-waves, 
and Q for S-waves is independent of the inhomogeneity angle � (in isotropic media).

Figure 2 shows the quality factors, where the solid black line corresponds to Eq. 3.125 
(B) and the solid points to Eq. 4.198 (CV) of Carcione (2022). As can be seen, the two 
approaches are equivalent, with the P-wave Q factor decreasing with � and the S-wave Q 
factors being independent of this angle. It can be shown that the S-wave quality factor for 
inhomogeneous waves in the isotropic poro-viscoelastic case is also independent of the 
inhomogeneity angle.

Furthermore, Carcione et al. (2020) provide a specific example of the anisotropic case 
by showing the quality factor of qP and qS waves near forbidden directions where anoma-
lous behaviour occurs at certain propagation angles. The forbidden directions occur when 
the phase velocity approaches a zero value. In general, the phase velocity of homogene-
ous waves ( � = 0) exceeds that of inhomogeneous waves, while the latter exhibit greater 
attenuation (lower quality factor). Near the forbidden directions, the opposite behaviour 
can occur.

Explicit expressions of the quality factors (Q) for inhomogeneous waves are given in 
(Borcherdt 2009, Eqs.  3.4.67, 3.4.68 and 3.4.69) for P, SI, SII waves propagating in an 
isotropic medium, Eq. 3.125 in Carcione (2022) for P-waves, and Eq. 3.1.30 in the same 
book using the definition of Buchen (1971) based on the total energy ( Q ) (see next section).

7  Effect of Anisotropy and Visco‑Poroelasticity

Equation 7.696 in Carcione (2022), i.e.

(21)Q =
��2Re(k2) + 2�R[Im(k2) tan �]2

Im(k2)[−��2 + 2�IIm(k2) tan2 �]
.

(22)Q = −
Re[(�∗X + �∗W)s∗

1
+ (�∗W + �∗Z)s∗

3
)]

2[Re(�∗X + �∗W)Im(s1) + Re(�∗W + �∗Z)Im(s3)]
.

(23)Q =
Re(v2

c
v
⊤
⋅ R ⋅ v

∗)

2 Im(vc)Re(vcv
⊤
⋅ R ⋅ v

∗)
,
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(see Section 7.24.5 for more details) gives the general quality factor for qP and qS homoge-
neous waves in the anisotropic poro-viscoelastic case defined in terms of the strain energy, 
and the corresponding energy balance is given in Carcione (2001). Only if the viscosity is 
zero (in the absence of Biot loss), the quality factor has the form (11), as expected, since 
the Biot loss is related to the kinetic energy.

On the other hand, the Buchen definition, using the total energy, of the quality factor for 
homogeneous waves, applied to poro-viscoelastic media, simplifies to

which agrees with Eq. (12).

8  Relaxation Peaks of Q−1 from Predictive Models and Constant Q

The Zener phenomenological model predicts a symmetric relaxation peak as a function 
of the logarithm of frequency. Physical or predictive models show similar relaxation 
peaks (Spencer 1981). Scattering loss occurs as reflection, refraction and diffraction of 
elastic energy, and this is conserved. A major cause of attenuation in porous media, at the 

(24)Q =
Re(vc)

2 Im(vc)
=

[Re(vc)]
2

Im(v2
c
)
,

Fig. 2  Quality factor as a function of the inhomogeneity angle, based on the Buchen (1971) (B) and Car-
cione and Cavallini (1993) (CV) energy balances. A distinction between homogeneous and inhomogeneous 
waves is made
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reservoir scale, is wave-induced fluid flow, which occurs at different spatial scales. The 
flow can be classified as macroscopic, microscopic and mesoscopic. At larger scales, grain 
boundary relaxation is the predominant cause of seismic attenuation in the Earth’s crust 
and mantle. Furthermore, thermo-poroelasticity is another cause of attenuation.

8.1  Scattering

At low frequencies, when the wavelength is much larger than the characteristic scales of 
heterogeneity, the medium behaves like an equivalent medium, e.g. finely layered media 
is a transversely isotropic homogeneous medium (Backus averaging is its mathematical 
model) (Carcione 2022,  Section  1.5). At high frequencies, scattering attenuation causes 
energy to be distributed into coda waves and the primary pulse behaves viscoelastically 
of the Zener type (Kikuchi 1981). Intrinsic ( �i ) and scattering ( �s ) attenuations are 
approximately additive, since the decay factor is exp(−�ix) exp(−�sx) = exp[−(�i + �s)x] , 
and in the low-loss case ( Q ≫ 1 ), the total dissipation factor is

based on Eq. (14). Both types of attenuation can, in principle, be separated on the basis of 
Eq. (25) and a proper scattering theory (Frankel and Wennerberg 1987). The location of 
the scattering peak is inversely proportional to the size of the heterogeneity. For instance, 
for cracks of length a the peak P-wave loss frequency is

where vP is the P-wave velocity (Kikuchi 1981).

8.2  Wave‑Induced Fluid‑Flow Attenuation

Macroscopic Biot attenuation: The attenuation mechanism predicted by Biot in 1956 has 
a macroscopic nature (Carcione 2022, Chapter 7). It is the wavelength-scale equilibration 
between the peaks and troughs of the P-wave. The dissipation factor of the fast P-wave, 
Q−1 , can be approximated by that of a Zener model. The location of the relaxation peak is

where � is the porosity, � is the fluid viscosity, � is the bulk density, �̄� is the permeability, 
�f  is the fluid density and T  is the rock tortuosity. This equation shows that the relaxation 
peak shifts towards the high frequencies with increasing viscosity and decreasing perme-
ability. This means that, at low frequencies, attenuation decreases with increasing viscosity 
(or decreasing permeability). This is inconsistent with experimental data at seismic and 
sonic frequencies, as the macroscopic-flow mechanism underestimates the wave velocity 
dispersion and attenuation in rocks.

Microscopic squirt-flow attenuation: An important attenuation mechanism in rocks 
is the so-called “squirt flow", in which there is a flow from fluid-filled microcracks (or 
grain contacts) into the pore space and back (Carcione 2022, Section 7.15). The squirt-flow 
model assumes that the rock becomes stiffer if the fluid pressure does not have enough 
time to establish equilibrium between the stiff and compliant pores (grain contacts or 

(25)Q−1 = Q−1
i

+ Q−1
s
,

(26)fs ≈
vP

5a
,

(27)fB ≈
𝜙𝜂𝜌

2𝜋�̄�𝜌f (𝜌T − 𝜙𝜌f )
,
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main voids). This condition is described by the unrelaxed limit of the Zener elements. The 
squirt-flow peak frequency is

where r is the crack thickness to crack length ratio, �c is the compliant porosity and Ks , 
Km and Kh are the bulk moduli corresponding to the grain, dry rock and dry rock at a 
confining pressure when all compliant pores (or cracks and grain contacts) are closed, i.e. a 
hypothetical rock without the soft porosity, respectively.

Mesoscopic attenuation: Local fluid flow explains the high attenuation of low-frequency 
waves in fluid-saturated rocks. When seismic waves propagate through small-scale 
heterogeneities, pressure gradients are induced between regions of different properties. 
White (1975) was the first to show that attenuation and velocity dispersion measurements 
can be explained by the combined effect of mesoscopic-scale inhomogeneities and 
energy transfer between wave modes, with P-wave to slow P (Biot)-wave conversion 
being the main physical mechanism. We refer to this mechanism as mesoscopic loss. The 
mesoscopic-scale length is intended to be larger than the grain sizes but much smaller 
than the wavelength of the pulse. A review of the different theories and authors, who 
have contributed to the understanding of this mechanism, can be found in Müller et  al. 
(2010) (see also Carcione 2022, Section 7.16; Gurevich and Carcione 2022). At seismic 
frequencies, the mesoscopic loss mechanism seems to be dominant. Mesoscopic patches 
of gas in a water-saturated sandstone dissipate significant energy through conversion to the 
diffusive slow mode. The corresponding peak frequency is

where here a is the size of the patches and Kf  is fluid bulk modulus. Note the inverse 
dependence on �̄�∕𝜂 compared to the Biot mechanism in Eq. (27). Generalization of the 
Biot theory to the case of multiple material phases and/or double porosity describe more 
realistic situations (Ba et al. 2015).

8.3  Ductility and Partial Melting. Grain Boundary Relaxation

Seismic propagation in the upper part of the Earth’s crust, where geothermal reservoirs are 
located, shows strong velocity dispersion and attenuation due to different permeability and 
saturation conditions and is influenced by the brittle–ductile transition (BDT), including 
zones of partial melting. Under the elastic–plastic aspect, the seismic properties (velocity, 
quality factor and density) depend on the effective pressure and temperature. The associated 
effects can be described using the Burgers mechanical model applied to the shear modulus 
of the dry rock (Carcione, Section 2.4.4). The Arrhenius equation in combination with the 
octahedral stress criterion defines the Burgers viscosity, which is responsible for the ductile 
behaviour of partial melting through a process called grain boundary relaxation (Carcione 
et al. 2018; Carcione 2022, Section 7.23). The viscosity of the earth influences the S-waves 
so strongly that they disappear when the earth melts completely. P-waves show strong 
attenuation and scattering (Zener-like peaks) with frequency and temperature—at a critical 
temperature that depends on frequency and Burgers viscosity. The behaviour of the seismic 
waves in the presence of partial melting can be used to identify the BDT.

(28)fsf ≈
Ksr

2

3���
, � =

Ks

�c

(

1

Km

−
1

Kh

)

,

(29)fm ≈
�̄�Kf

𝜙𝜂a2
,
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8.4  Thermo‑Poroelasticity

Thermoelasticity couples the fields of deformation and temperature. An elastic source 
leads to a temperature field and wave attenuation, while a heat source causes anelastic 
deformations. The theory is important in seismology, low-temperature physics, the theory 
of shocks and vibrations, astrophysics and in the field of nanotechnology. The theory 
of thermo-poroelasticity predicts a P-wave, an S-wave, a slow Biot wave and a thermal 
wave with similar properties to the Biot wave (Carcione 2022, Section 7.28; Gurevich and 
Carcione 2022, Section 2.11). Attenuation in the seismic band can be significant due to the 
conversion of P-waves to thermal modes in heterogeneous media, which can be referred 
to as wave-induced thermo-poroelastic attenuation, analogous to wave-induced fluid flow 
(mesoscopic) damping in connection with the slow Biot mode. The attenuation (dissipation 
factor or inverse Q) has the form of relaxation peaks (Carcione et al. 2020).

8.5  Example

Consider the material properties for a water-saturated sandstone (see Table 1). Using the 
Gassmann equations (Carcione 2022, Eq. 7.34), the P-wave velocity is vP = 3366 m/s, and 
the bulk density is � = 2167 kg/m3 . Assuming a = 10 cm and r = 0.0008, the relaxation 
frequencies of the different attenuation mechanisms are: fs = 6.7 kHz (scattering), fB = 213 
kHz (Biot global flow), fsf  = 815 Hz (squirt flow, with �c = 0.0002, Kh = 12 GPa) and fm = 
75 Hz (mesoscopic). While scattering has a peak at the sonic frequencies and the Biot loss 
dominates at high (laboratory) frequencies, the squirt-flow and mesoscopic loss mecha-
nisms are important at seismic frequencies. Replacing water with oil ( �f  = 800 kg/m3 , Kf  
= 2 GPa and � = 100 cP), the peak frequencies are fs = 6.8 kHz, fB = 27 MHz, fsf  = 8 Hz 
and fm = 0.7 Hz.

For example, Fig.  3 shows the dissipation factor as a function of frequency, 
corresponding to brine and light oil (Carcione and Gurevich 2011), where the squirt-flow 
and Biot peaks can be seen.

8.6  Constant Q Based on Fractional Derivatives

Attenuation can also be modelled with fractional derivatives (e.g. Picotti and Carcione 
2017). An example is the fractional Kelvin–Voigt model, where the time derivative of the 
strain in the dashpot (the overdot) is replaced by �qt  , where q is the order of the derivative. 
Then, � = K� + ��

q

t �, 0 ≤ q ≤ 1 , where K is a stiffness, � is a pseudo-viscosity, which is 
a stiffness for q = 0 and a viscosity for q = 1. The limits q = 0 and q = 1 give Hooke’s law 
and the stress–strain of the Kelvin–Voigt model, respectively. In the frequency domain, 
M = K + �(i�)q . If K = 0, we obtain a constant Q = cot(�q∕2) , as in Kjartansson (1979) 
(see also Carcione 2022, Section 2.5; Mainardi 2022).

9  Bounds and Averages of Q

For composite media, bounds and average values for Q can be defined on the basis of 
various models (Carcione 2022, Section 7.21). The bounds apply to any medium in which 
wave propagation undergoes dissipation and velocity dispersion, e.g. for composite-
viscoelastic and poro-viscoelastic materials. To obtain complex stiffness constraints and 
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average values, the correspondence principle is applied to calculate the solution of the 
viscoelastic problem from the corresponding elastic solution. Subsequently, the attenuation 
is determined for—physical and heuristic—models considering general geometric shapes. 
The approach is relevant for the seismic characterization of solid composite materials 
(Carcione 2022, Chapter 8).

10  What Experiments Reveal About Q

P-wave dissipation was initially described mainly by phenomenological models represented 
by mechanical models made of springs and dashpots, such as the standard-linear-solid 
system, also called the Zener model (Carcione 2022, Section 2.4). However, Zener (1992) 
obtained this model from thermoelasticity for thin rods as an approximation and the model 
was already known as a combination of a spring and the Kelvin–Voigt model. An example 
of the agreement between theory and experiment is shown in Zener (1992, Fig. 8), where a 
typical relaxation peak (1/Q) fitted by the Zener model can be seen.

Knopoff (1964) reports on several experiments. His Fig.  4 shows results obtained by 
Born in 1941, who examined a sandstone in the laboratory into which different amounts of 
interstitial water were injected. The dry rock has a Q that does not depend on the frequency; 
when different amounts of water are injected, the magnitude 1/Q increases linearly with the 
frequency f and � is proportional to f 2 . Figure 1 in Knopoff (1964) shows the attenuation 

Fig. 3  Dissipation factor as a function of frequency, corresponding to brine and light oil saturating a sand-
stone
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factor as a function of frequency in water, which is found to vary as the square of frequency 
for different temperatures. Then, Q is inversely proportional to the frequency, as in the 
previous case. An experiment conducted on the Pierre shale in Colorado, in which pulses 
were recorded from seismometers placed at various locations in boreholes in the formation, 
shows an attenuation factor that is linear with frequency in the range of 50–550 Hz (Fig. 11 
in McDonal et al. 1958). Consequently, Q is frequency independent in this case.

Murphy (1982) has shown that the extensional-wave loss peaks at 85% water satura-
tion, as can be seen in his Fig. 6. As shown in Fig. 4, this behaviour can be predicted 
by White’s mesoscopic loss theory (right graph), according to which the compressional 
wave loses energy in gas patches by conversion to slow Biot diffusion modes (Carcione 
et al. 2006; Carcione 2022, Section 7.16).

Figure  2 in Jones (1986) shows experimental 1000/Q (as a broad peak) for 
extensional waves on a Coconino sandstone from Tittmann and coworkers, who varied 
the fluid viscosity by mixing water and glycerol and changing the temperature. The data 
are fitted with a local flow theory from O’Connell (1983). The inputs to this model are 
the fluid properties and the rock microstructure.

On the other hand, wave attenuation as a function of frequency in the Earth follows 
power laws, e.g. Q( P and S) ∝ f 𝜈 , 0.25 < 𝜈 < 0.6 and Q(S) ∝ f 𝜈 , 1.3 < 𝜈 < 1.7 , as can 
be seen in Fig.  5 in Ulug and Berckhemer 1984 (mantle) and Fig.  9 in Castro et  al. 
(2008) (crust), respectively.

Fig. 4  Dissipation factor as a function of saturation predicted with the White theory
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Carcione and Gangi (2000) report a fit of the ultrasonic (1 MHz) quality factor ver-
sus differential (confining minus pore) pressure for water-saturated Berea sandstone (see 
Fig. 5). The dotted line corresponds to the range 0–2 km, where the rock is normally pres-
sured, and the continuous lines to the range 2–8 km, where the rock is overpressured. The 
black squares are the experimental bedding-parallel quality factors obtained by Prasad and 
Manghnani (1997) for Berea sandstone. The quality factor decreases with decreasing dif-
ferential pressure due to the opening of cracks and the resulting flow effects.

Biot–Gardner effect: When measuring axial or volumetric motions along a porous 
cylindrical sample (a rod), there is fluid flow at the sides and ends of the sample if these 
surfaces are not sealed, and open or partially open pore boundary conditions hold. These 
radial and axial flows induce the Biot–Gardner effect, an “artificial" attenuation peak (and 
related dispersion) due to the generation of slow (diffusion) Biot modes at the cylinder 
boundaries, which does not occur for a wave propagating in unbounded media (Carcione 
2022, Section 7.17). Therefore, we must distinguish between these effects and the peaks 
related to intrinsic dissipation in unbounded media. Cheng et  al. (2020) show how to 
remove the Biot–Gardner effect from experimental data to obtain the intrinsic quality 
factor of the rock.

11  Analogy Between Visco‑Elasticity and Electric Circuits

Leonardo Da Vinci was convinced that light has a finite speed. In the Codex Ashburnham 
(Biblioathèque Nationale, Paris), he declared It is impossible for the eye to project the visual 
force from itself by visual rays, since, as soon as it opens, the front [of the eye] which would 
cause this emanation would have to go out to the object, and this it could not do without time. 
Hooke believed that light is a vibrational displacement of the medium through which it propa-
gates at finite speed. Later, in the second half of the 19th century, James Clerk Maxwell and 

Theory: Carcione and Gangi (2000)
Data: Berea sandstone. Prasad and Manghani (1997)
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Fig. 5  P-wave quality factor as a function of the differential pressure (confining minus pore)
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Lord Kelvin used physical and mathematical analogies to investigate wave phenomena in the 
theory of elasticity, electricity and electromagnetism.

Mathematical analogies are used extensively in many fields of physics (Tonti 1976). The 
most basic analogy between mechanical models of viscoelasticity and electrical circuits is 
shown in Fig. 6, where (a) refers to the Maxwell model and (b) to the Kelvin–Voigt model. 
In these models, a stress is applied to the mechanical model and a current is applied to the 
electrical circuit.

It can be shown that the quality factor of the Maxwell model is

(Carcione 2022,  Eq.  2.176), where � and MU are the viscosity and stiffness modulus 
(unrelaxed or high frequency), respectively. For the parallel circuit, we have

(Carcione 2022, Eq. 8.36), where C and R are the capacitance and resistor, respectively, 
and 𝜖 (C) and �̄� (1/R) are the associated dielectric constant and electrical conductivity, 

(30)Q =
��

MU

(31)Q = 𝜔RC =
𝜔𝜖

�̄�

Fig. 6  Examples of analogy between mechanical models and electric circuits
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respectively. It is clear the mathematical analogy: � → R and MU → C−1 . If � = 0, the 
stored energy is zero, because the absence of the dashpot implies a discontinuity of the 
stress and Q = 0 (all energy is lost).

On the other hand, for the Kelvin–Voigt model and series circuit it is

(Carcione 2022, Eq. 2.184), where MR is the relaxed (or zero frequency) stiffness modulus, 
and the analogy implies

In this case � = 0, implies that all the energy is stored in the spring and Q = ∞.
In a more general situation, an analogy (Carcione 2022,  Eq.  8.135) can be made 

between the standard-linear-solid (Zener) model (Carcione 2022,  Section  2.4.3) and the 
Debye circuit consisting of two capacitors and a resistor (Carcione 2022, Fig. 8.3).

12  A Practical Application

We consider the data in Figs.  2 and 4 of Cadoret et  al. (1995) (velocity versus water 
saturation) and Fig. 1 in Cadoret et al. (1998) (Q factor versus water saturation, 1000/QE 
closed). The rock is Estaillades limestone, the frequency is 1 KHz (sonic band), the 
porosity is 0.3, the permeability is 255 mdarcy and the experiment is a drying one, where 
gas (CO2 ) patches are created. The experiment is performed at atmospheric pressure in 
resonant bars. The data are given as extensional-wave velocity, vE , shear-wave velocity, vS , 
and extensional-wave quality factor, QE . To obtain the P-wave values ( vP and QP ), we use 
Eqs. (19) and (20), and Cadoret et al. (1995)

(to be used for Poisson ratios, 𝜈 < 0.4 ; here the range is 0.22–0.29), where (Mavko et al. 
2020)

and we assume QS = 270 at all saturations (see Fig. 3 in Cadoret et al. 1998)). In the case 
of shear waves, the test results show a slight variation in velocity with frequency. The 
variation of shear-wave velocity with saturation in Cadoret et  al. (1995) is explained by 
the density effect, so that there is practically no velocity dispersion and the attenuation is 
very weak. Table 1 in Pang et al. (2019) contains the values of the different properties, and 
the data are shown in Fig. 7. The saturations correspond to the experimental points of the 
axial or extensional velocities vE . The quality factors QE were linearly interpolated to these 
points. Figure 8 shows the dissipation factor versus the P-wave velocity used in the rock 
physics template (see below).

(32)Q =
MR

��

(33)Q =
1

𝜔RC
=

�̄�

𝜔𝜖
.

(34)v2
P
=

v2
S
(4v2

S
− v2

E
)

3v2
S
− v2

E

(35)� =
(vP∕vS)

2 − 2

2[(vP∕vS)
2 − 1]
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Fig. 7  Velocities (a) and dissipation factors (b) versus water saturation in Estaillades limestone
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Table  1 in Pang et  al. (2019) shows the properties for fitting the data with the Biot-
White model (Carcione 2022,  Section  7.16). Supplementary microstructural data on the 
Estaillades limestone can be found in (Rasolofosaon and Zinszner, Fig. 2). We use Krief 
model to obtain the dry rock bulk and shear moduli

, respectively, where A is a constant and �s is the shear modulus of the grains. Permeability 
is related to porosity by the Kozeny–Carman relation

where �0 is a constant (Pang et al. 2019). Figure 9 compares the theoretical and experimen-
tal results. The radius of the gas patches is 5 mm. The template is shown in Fig. 10 and, as 
can be seen, enables the determination of porosity and saturation when the experimental 
data (symbols, obtained from inversion techniques) are superimposed to the template.

Estimating the seismic Q is more difficult than in the laboratory due to many factors. 
Due to the low-frequency content of seismic waves, attenuation effects are usually small 
and can generally only be measured with accuracy over long distances. In addition, 
amplitudes can be affected by other factors, such as reflection/transmission phenomena 

(36)
Km = Ks(1 − �)A∕(1−�), and

�m = Km�s∕Ks,

(37)� =
�0�

3

(1 − �)2

Fig. 8  Dissipation factor versus P-wave velocity and varying brine saturation
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Fig. 9  P-wave velocity (a) and dissipation factor (b) versus water saturation. Fit with White mesoscopic 
model (solid line). The radius of the gas patches is 5 mm
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and low signal-to-noise ratios. Picotti and Carcione (2006) have successfully tested the 
reliability of the spectral ratio and frequency shift methods for estimating the intrinsic 
quality factor in the presence of random noise. Rossi et al. (2007) estimate the quality 
factor from seismic reflections using a tomographic inversion algorithm based on the 
frequency shift method. The combined use of travel time and attenuation tomography 
provides a 3D velocity–Q cube that was used to map the spatial distribution of gas-
hydrate concentration and free gas saturation. Pang et al. (2021) estimate seismic Q and 
relate it to fluid saturation based on the self-consistent approximation and poroelasticity 

Fig. 10  Rock physics template of dissipation factor versus P-wave velocity, with isolines of porosity and 
brine saturation

Table 1  Sandstone properties
Grain Bulk modulus , Ks 40  GPa

Density , �s 2650  kg/m3

Matrix Porosity , � 0.3
Bulk modulus , Km 10  GPa
Shear modulus , �m 8  GPa
Permeability , �̄� 100  mD

Tortuosity , T 2.3
Fluid Bulk modulus , Kf 2.25  GPa

Density , �f 1040 kg/m3

Viscosity , � 1  cP
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theory to create a rock physics template and evaluate gas reserves in tight sandstones. A 
similar technique is applied to carbonates by Pang et al. (2019).

13  Conclusions

We have shown that the quality factor Q used in the seismic-elastic literature can be 
different due to several factors: the shape of the medium, the spatial dimension, the use of 
the strain energy or the total energy, the type of wave (propagating or stationary), the type 
of loss mechanism (in poroelasticity) and the inhomogeneity of the wave. We also consider 
the analogy between elastic and electromagnetic waves and discuss theories based on 
relaxation peaks, bounds on Q and experiments showing the behaviour of Q as a function 
of frequency, saturation and pore pressure.
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