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Abstract
This paper revisits the theories of Q (quality factor) as a measure of the attenuation and velocity dispersion of a wave field.
Q is a dimensionless measure of energy loss per cycle, and a proper understanding is important in a variety of fields, from
seismology, geophysical prospecting to acoustics of materials. Measurements for standing modes and propagating waves
differ and yield the temporal and spatial Q, respectively. This distinction is largely ignored in the literature. The relationship
between these Qs is investigated for a power-law stress–strain relation based on spatial fractional derivatives that describes the
behavior of compressional waves when combined with the conservation of momentum equation. In addition, the relationship
between the quality factors for low-loss media proposed by Knopoff et al. 60 years ago is verified.
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Introduction

Seismic attenuation has a decisive influence on the signal and
is therefore important for the synthesis of the waveform. It is
parameterized by the quality factor Q, which accounts for the
total energy loss of the seismic pulse during propagation and
is a key parameter for extracting information about the sub-
surface layers (e.g., Gurevich and Carcione 2022; Qadrouh
et al. 2016, 2018, 2020).

The distinction between spatial and temporal quality fac-
tors, Q and QT , is important in seismology, where the
anelastic properties of free oscillations of the Earth (or nor-
mal modes) strictly differ from those of teleseismic waves.
A relationship between these two different Q’s and between
the correspondingquality factors has beenproposedbyBrune
(1962) and Knopoff et al. (1964) 60 years ago, based on the
relation involving the group velocity and low-loss media.
For surface waves, the correction between the two quality
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factors can be significant. Brune (1962) found values from
1.2 to 1.3 for Rayleigh and Love waves. In the same manner,
ultrasonic and resonant-bar measurements to estimate atten-
uation in the laboratory (see Gurevich and Carcione 2022,
App. B1 and B2, respectively) yield different values. In the
first case, the method uses a wave that travels through the
sample in only one direction at a time; interference effects
then do not occur. In the second case, a sample is made to
oscillate in one of its eigenmodes so that a standing wave
is formed. Such standing waves are created by the interfer-
ence of propagating wavesmoving in opposite directions as a
result of successive reflections at the ends of the sample. For
instance, quasi-static numerical experiments (Santos et al.
2014) yield a temporal Q.

Constant Q with frequency is a concept that has been
used in many studies so far to correctly model the ampli-
tude and phase of seismic signals and to reduce the number
of parameters of the inversion process. Spatial fractional
derivatives have been used in the geophysical literature to
model constant Q since Carcione (2010) introduced the frac-
tional Fourier pseudospectral method. The reason for this is
that the spatial fractional derivative does not require addi-
tional variables and computer storage like the standard linear
solid rheology or the temporal fractional derivative (e.g.,
Blanch et al. 1995; Mainardi 2022; Carcione 2022, Section
3.11.1). The fractional pseudospectral method in Carcione
(2010) computes non-integer order Laplacian derivatives.
This approach implies anelastic attenuation and velocity dis-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-025-12202-8&domain=pdf


48 Page 2 of 6 Arabian Journal of Geosciences (2025) 18 :48

persion when implemented in wave equations. Using this
method, Carcione and coworkers simulated the propagation
of constant-Q waves in a series of publications (e.g., Zhu and
Carcione 2013; Qiao et al. 2019).

The analysis of standing and propagating waves presented
here is based on a theoretical analysis using an energy bal-
ance given in Carcione (2022, section 2.3). If ωI and α are
the temporal and spatial attenuation factors, exp(−ωI t) and
exp(−αx) are the standing and propagating decays, respec-
tively, where t and x are the time and spatial variables,
respectively. In what follows, we illustrate the actual rela-
tion between the temporal and spatial quality factor using
stress–strain relations based on spatial fractional derivatives,
which has a power-law form in the wavenumber and fre-
quency domains, respectively, and a constant quality factor.
The theory is not restricted to low-loss media.

Seismic attenuation based on spatial
fractional derivatives

Let us define the viscoacoustic stress–strain relation in 3D
space,

σ = M0k
−2γ
0 ∇2γ ε (1)

(Carcione 2010; Zhu and Carcione 2013), where σ is the
stress, M0 is a bulk modulus, ε is the trace of the strain
tensor (ε = ∂i ui ), ui are the displacements, γ is the loss
parameter, and k0 is a reference scaling wavenumber. The
case γ = 0 gives the acoustic stress–strain relation. The
operator ∇ = ∑

i x̂i∂i , i = 1, 2, 3 is the spatial differentia-
tion vector, such that ∇2 = �, the Laplacian. The Einstein
implicit summation is assumed. Modeling the seismic atten-
uation with equation (1) (especially a constant Q) is very
efficient because, unlike other approaches, it does not require
memory variables or additional spatial derivatives (Carcione
2022, Section 3.11.2).

The equations of momentum conservation are

∂iσ = ρ∂2t ui , (2)

where ρ is the mass density.
Weassumehomogeneousviscoelasticwaves (thewavenum-

ber and attenuation vectors point in the same direction) (e.g.,
Carcione 2022; Section 3.3.1). A standing or stationary wave
has the form

exp[i(
t − κi xi )], 
 = ω + iωI , (3)

where
 is the complex frequency,ω is the angular frequency
(a real quantity), thewavenumber components κi are real, and

i = √−1. The wavenumber is κ =
√∑

i κ
2
i .

On the other hand, a propagating wave is of the form

exp[i(ωt − ki xi )], k =
√∑

i

k2i = κ − iα, (4)

where ki are the complex wavenumber components, and κ is
the real wavenumber, which can be different from that of the
standing wave.

Stationary waves: temporal quality factor

In this case, the wave remains in place and decays with time,
describing stationary-wave loss. It has a damping factor of
the form exp(−ωI t). A Fourier transform of (1) to the (real)
wavenumber domain gives

σ = Mε, M = M0

(

−i
κ

k0

)2γ

= M0

(

i
κ

k0

)2γ

, (5)

since∇ ≡ −i
∑

i x̂iκi or∇2 ≡ −κ2,whereM is the complex
modulus, and we have used the property (−1)2 = 1. In fact,
the problem becomes one-dimensional, since there is a single
wave mode and isotropy. Therefore, we can apply the theory
presented in Carcione (2022, Section 2.3).

The complex velocity is

vc = 


κ
=

√
M

ρ
=

√
M0

ρ

(

i
κ

k0

)γ

, (6)

and the phase velocity is

vp = Re(
)

κ
= Re(vc) = v0

(
κ

k0

)γ

,

v0 =
√

M0

ρ
cos

(πγ

2

)
. (7)

The temporal quality factor is

QT = Re(M)

Im(M)
= cot πγ, (8)

where Re and Im denote real and imaginary parts, respec-
tively.

123



Arabian Journal of Geosciences (2025) 18 :48 Page 3 of 6 48

Then,

γ = 1

π
arctan Q−1

T . (9)

Since ω = κvp, we have

κ =
(

ωkγ
0

v0

)1/(1+γ )

. (10)

Defining ω0 = v0k0 and using (7), we obtain

vp = v0

(
ω

ω0

)β

, β = γ

1 + γ
. (11)

On the other hand, the attenuation factor is

ωI = Im(
) = ω tan
(πγ

2

)
, (12)

linear with frequency, as expected for a constant-Q medium.
Another physical quantity is the group velocity, valid for

low-loss media (e.g., Carcione 2022), which can be obtained
as

vg = ∂ω

∂κ
=

(
∂κ

∂ω

)−1

= v
β/γ
0

(
ω

k0

)β

= vp, (13)

where we have used equation (10) and ω0 = v0k0.

Traveling waves: spatial quality factor

In this case, k = κ − iα and the frequency is real. The wave
attenuates with distance with a damping factor exp(−αx).
From Eqs. (1) and (2), we obtain

∇2σ = ρ∂2t ε, or k2M = ρω2, (14)

since ∇2 ≡ −k2 and ∂2t ≡ −ω2,

M = M0

(
ik

k0

)2γ

and vc = ω

k
=

√
M0

ρ

(
ik

k0

)γ

. (15)

From (14) and (15), we have

vc = ω

k
= cv1

(
iω

ω1

)β

, v1 = 1

c

√
M0

ρ
,

ω1 = cv1k0, c = cos

(
πβ

2

)

. (16)

The phase velocity is

vp = ω

κ
=

[

Re

(
1

vc

)]−1

= v1

(
ω

ω1

)β

, (17)

and the spatial quality factor is

Q = Re(M)

Im(M)
= Re(v2c )

Im(v2c )
= cot πβ. (18)

Then,

γ = arctan Q−1

π − arctan Q−1 . (19)

The relation between the quality factors (8) and (18) is

arctan Q−1
T = π arctan Q−1

π − arctan Q−1 . (20)

On the other hand, the attenuation factor is

α = −Im(k) = −ωIm

(
1

vc

)

= ω

Q

(ω1

ω

)β

, (21)

almost linear with frequency in this case (ω1−β ≈ ω if β �
1).

Moreover, the group velocity is

vg = ∂ω

∂κ
=

(
∂κ

∂ω

)−1

= vp

1 − β
= (1 + γ )vp, (22)

where we have used Eq. (17).
In both cases, stationary and traveling waves, the phase

velocity depends on frequency as ωγ/(1+γ ) = ωβ .

Examples

Knopoff et al. relations

Knopoff et al. (1964) showed that the temporal and spatial
quality factors are related as QT = (vp/vg)Q, where vg and
vp are the spatial group and phase velocities, respectively.
Moreover, they showed that ωI = vgα. In their calculations,
they assumed low-loss media, isotropy and 1D propagation.
They conclude that the QT ’s measured from observations
of the Earth’s free vibration modes must be modified when
compared to the Q’s at the same periods obtained from exper-
iments with propagating waves.
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For the present model, we have

QT = (1 + γ )Q, and ωI = (1 + γ )vpα. (23)

Using Eqs. (8) and (18), and the property tan θ = θ (low-
loss media) for θ � 1, it is straightforward to show that the
first relationship is verified. Similarly, the second relationship
can be shown to be valid from Eqs. (12) and (21).

Waves and diffusion

Let us assume M0 = 10 GPa, ρ = 2000kg/m3, such that v0 =
2222m/s, k0 =0.1/mand twocases:γ =0.07 (wavelike) andγ

= 0.4 (diffusion). In the first case, we have quality factors QT

= 4.5 and Q = 4.8, typical of ocean-bottom unconsolidated
sediments ormud (Hamilton 1972). In the diffusion case, QT

= 0.3 and Q = 0.8. Graphical results are presented in Figs. 1

(a)

(b)

Fig. 1 Phase velocity (a) and attenuation factor (b) as a function of frequency for the wavelike case. The solid and dashed lines refer to standing
waves and propagating modes, respectively. (QT = 4.5 and Q = 4.8 are constant)
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(a)

(b)

Fig. 2 Phase velocity (a) and attenuation factor (b) as a function of frequency for the diffusion case. The solid and dashed lines refer to standing
waves and propagating modes, respectively. (QT = 0.3 and Q = 0.8 are constant)

and 2 for the wavelike and diffusion cases, respectively. The
plots show the phase velocities (a) and attenuation factors (b)
as a function of frequency for the temporal and spatial cases
(dashed-blue and black-solid lines, respectively). In the case
of diffusion, higher velocity and stronger attenuation can be
observed.

Conclusions

The relationship between the temporal and spatial Qs
has been obtained for a power-law stress–strain equation
based on spatial fractional derivatives. The analysis pro-

vides explicit expressions for the quality factors, attenuation
factors, andwave velocities as a function of frequency. In par-
ticular, the theory has been applied to compare the quality
factors associated with free vibrations modes in unbounded
media and propagating compressional waves. The relation-
ships established in the 1960s by Knopoff et al. are verified.

Data Availability The data are available from the corresponding author
on request.
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