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Abstract: The finite-difference frequency domain (FDFD) method is widely applied for 
simulating seismic wavefields, and a key to achieving successful FDFD simulation is to 
construct FDFD coeffi  cients that can eff ectively suppress numerical dispersion. Among the 
existing FDFD coefficients for seismic wavefield simulation, adaptive FDFD coefficients 
that vary with the number of wavelengths per grid can suppress numerical dispersion to the 
maximum extent. The current methods for calculating adaptive FDFD coefficients involve 
numerical integration, conjugate gradient (CG) optimization, sequential initial value selection, 
and smooth regularization, which are difficult to implement and inefficient in calculations. 
To simplify the calculation of adaptive FDFD coefficients and improve the corresponding 
computational effi  ciency, this paper proposes a new method for calculating adaptive FDFD 
coefficients. First, plane-wave solutions with different discrete propagation angles are 
substituted in the FDFD scheme, and the corresponding least-squares problem is constructed. 
As this problem is ill-conditioned and obtaining smooth adaptive FDFD coeffi  cients by the 
conventional solving method based on normal equations is difficult, this paper proposes 
solving the least-squares problem by solving the corresponding overdetermined linear system 
of equations through QR matrix decomposition. Compared with the existing methods for 
calculating adaptive FDFD coeffi  cients based on numerical integration, CG optimization, and 
sequential initial value selection, the proposed method allows for a simplifi ed computational 
process and considerably higher computational efficiency. Numerical wavefield simulation 
results show that the adaptive-coeffi  cient FDFD method based on QR matrix decomposition 
can achieve the same accuracy as those based on numerical integration, CG optimization, and 
sequential initial value selection while requiring less computation time.
Keywords: seismic wavefield simulation, finite-difference frequency-domain method, 
adaptive coeffi  cients, numerical dispersion, QR decomposition

Introduction

The finite-difference frequency-domain (FDFD) 
method is widely employed for seismic wavefield 

simulation (Štekl and Pratt, 1998; Chen, 2012; Xu 
and Gao, 2018). Compared with the finite-difference 
time-domain (FDTD) method (Virieux, 1986; Zhang 
et al., 2018; Wang et al., 2018), the FDFD method can 
efficiently simulate narrowband or multishot seismic 
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data, flexibly simulate seismic attenuation effects, 
parallelize the simulations of different frequency 
components of a wavefield, and avoid temporal 
dispersion and temporal extrapolation instability. 
Seismic wavefi eld simulations using the FDFD method 
usually suff er from numerical dispersion errors; thus, the 
construction of FDFD coefficients that can effectively 
suppress numerical dispersion is necessary for FDFD 
seismic wavefi eld simulations.

The existing methods for constructing FDFD 
coefficients in seismic wavefield simulations can be 
classified into three categories. The first category of 
methods is based on Taylor expansion. The second-
order FDFD method based on Taylor expansion is 
a classical method in seismic wavefield simulation 
(Pratt and Worthington, 1990; Pratt, 1990), which 
is easy to implement and corresponds to an FDFD 
sparse coefficient matrix with a small bandwidth. 
However, wavefield simulation based on the second-
order FDFD method requires a large number of grid 
points per wavelength (Jo et al., 1996), which leads 
to the requirement of more discrete sampling points, 
thereby resulting in a large FDFD coeffi  cient matrix that 
is difficult to be solved efficiently. By taking the two-
dimensional (2D) acoustic wave equation as an example 
and the relative phase velocity error not exceeding 1% 
as a criterion, the number of grid points per wavelength 
required for the corresponding numerical simulation 
with the second-order FDFD method is found to be 13 
(Chen, 2012). Meanwhile, similar to the coefficients 
based on high-order Taylor expansions commonly used 
in FDTD methods (Dablain, 1986; Gao et al., 2018), 
coeffi  cients based on high-order Taylor expansions can 
also be used in FDFD methods (Xu et al., 2021a). The 
implementation of wavefield simulations based on the 
high-order FDFD method is easy and requires few grid 
points per wavelength. However, the high-order FDFD 
corresponds to a large bandwidth of the FDFD sparse 
coeffi  cient matrix, which is diffi  cult to solve for multiple 
shots with a direct solver. Furthermore, the coefficient 
matrix contains more nonzero elements, requiring great 
computational eff orts while employing an iterative solver 
(Xu et al., 2021b).

The second category involves optimal FDFD 
coefficients. To reduce the number of grid points per 
wavelength required by the traditional second-order 
FDFD method and avoid the large matrix bandwidth 
of the high-order FDFD method, optimal FDFD 
coefficients that optimize numerical dispersion over 

a range of wavenumbers are utilized (Štekl and Pratt, 
1998; Min et al., 2000; Chen, 2012). Optimal FDFD 
coeffi  cients are obtained using the plane-wave solution 
of the wave equation to derive the explicit numerical-
dispersion relation, selecting an appropriate range of 
the number of wavelengths per grid (NWPG), and 
then optimizing numerical dispersion within that range 
to obtain the FDFD coefficients. Compared with the 
traditional second-order FDFD method, the optimal-
coefficient FDFD method can effectively reduce the 
required number of grid points per wavelength. By 
taking the 2D acoustic wave equation as an example, 
the number of grid points per wavelength required 
for numerical simulation using the optimal nine-point 
FDFD method is found to be 4 (Jo et al., 1996; Chen, 
2012), while that using the optimal 25-point FDFD 
can be reduced to 2.13 (Shin and Sohn, 1998; Zhang 
et al., 2014; Fan et al., 2017). Although the optimal 
25-point FDFD method can well suppress numerical 
dispersion even when the number of grid points per 
wavelength is close to the Nyquist sampling limit, the 
sparse coeffi  cient matrix of the FDFD corresponding to 
the method has a larger bandwidth and more nonzero 
elements compared to the second-order FDFD method 
and the optimal nine-point FDFD method. Consequently, 
a greater computational effort is required to solve the 
corresponding sparse linear equation system (Xu and 
Gao, 2018). Moreover, although the optimal FDFD 
method can effectively reduce the required number of 
grid points per wavelength compared to the traditional 
second-order FDFD method, the numerical dispersion 
error corresponding to each NWPG is not fully 
minimized. This is because the optimal FDFD method 
considers numerical errors corresponding to more than 
one NWPG when the same FDFD coeffi  cients are used 
for diff erent NWPGs (Aghamiry et al., 2022).

The third category involves adapt ive FDFD 
coefficients that assume different values for different 
NWPGs. On the basis of the 2D acoustic wave 
equation, Xu and Gao (2018) proposed adaptive FDFD 
coefficients that vary with NWPG. For the adaptive 
FDFD coeffi  cients, the plane-wave solution of the wave 
equation is substituted into the FDFD discrete scheme, 
and the corresponding adaptive FDFD coefficients are 
obtained by minimizing the substitution error of the 
plane-wave solution for different NWPGs. Further, to 
avoid calculating the adaptive FDFD coeffi  cients for each 
discrete point of the model, which is computationally 
intensive, Xu and Gao (2018) proposed the calculation 
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of adaptive FDFD coeffi  cients for NWPGs sampled from 
0 to 0.5 with a small sampling interval before wavefi eld 
simulation, thereby constructing a lookup table for 
adaptive FDFD coeffi  cients. The lookup table enables the 
improvement of the optimal FDFD coeffi  cients through 
adaptive ones with negligible extra computational cost 
compared with the cost of a wavefield simulation (Xu 
and Gao, 2018; Aghamiry et al., 2022). Xu et al. (2021b) 
extended the adaptive-coefficient FDFD method to the 
three-dimensional (3D) acoustic wave equation and 
proposed a general adaptive-coefficient FDFD scheme 
that is easy to generalize and implement. Aghamiry et 
al. (2022) verified that the adaptive-coefficient FDFD 
method can simulate 3D large-scale complex models 
with high accuracy and can simulate models with sharp 
contrast more accurately than the presently employed 
temporal second-order and spatial eighth-order FDTD 
methods. Compared with the optimal FDFD method, 
the adaptive-coefficient FDFD method can reduce the 
numerical dispersion error corresponding to each NWPG 
and reduce the required number of grid points per 
wavelength. By taking the 2D acoustic wave equation 
as an example, the required number of grid points per 
wavelength for the numerical simulation using the 
adaptive-coefficient nine-point FDFD method can be 
reduced to 2.12 (Xu and Gao, 2018). Thus, the adaptive-
coefficient nine-point FDFD method can achieve 
accuracy comparable to that of the optimal 25-point 
FDFD method. In addition, the computational cost and 
computer memory required are comparable to those 
of the optimal nine-point FDFD method. Due to the 
superiority of the adaptive-coefficient FDFD method 
over its optimal-coefficient counterpart, it has been 
successfully employed in 3D large-scale full-waveform 
inversions (Aghamiry et al., 2022; Tournier et al., 2022; 
Operto et al., 2023).

Among the existing FDFD coefficients for seismic 
wavefield simulation, adaptive FDFD coefficients have 
the advantage of maximizing numerical dispersion 
suppression. However, the current methods for 
calculating adaptive FDFD coefficients are difficult 
to implement and computationally inefficient. The 
method employed by Xu and Gao (2018) and Xu et 
al. (2021b) to calculate adaptive FDFD coefficients 
involves numerical integration and conjugate gradient 
(CG) optimization. Further, it requires using the 
adaptive FDFD coeffi  cients obtained for larger NWPGs 
as initial values for the iterative optimization of the 
adaptive FDFD coefficients corresponding to smaller 

NWPGs to ensure the smoothness of the obtained 
adaptive FDFD coefficients. Although the method for 
calculating adaptive coefficients adopted by Aghamiry 
et al. (2022) avoids numerical integration and iterative 
optimization, a large-scale overdetermined linear system 
needs to be solved. Further, the overdetermined linear 
system contains a smooth regularization term to ensure 
the smoothness of the obtained adaptive coefficients. 
However, Aghamiry et al. (2022) did not provide a 
specific construction scheme for the corresponding 
smooth regularization term.

To s impl i fy  the  ca lcula t ion  of  the  adapt ive 
FDFD coefficients and improve the corresponding 
computational effi  ciency, a new method for calculating 
the coefficients is proposed herein. First, plane-wave 
solutions with diff erent discrete propagation angles are 
substituted into the FDFD scheme, and the corresponding 
least-squares problem is constructed. Since this least-
squares problem is ill-conditioned and obtaining smooth 
adaptive FDFD coefficients by conventional methods 
based on normal equations (NEs) is diffi  cult, this paper 
proposes solving the least-squares problem by solving 
the corresponding overdetermined linear system of 
equations through QR matrix decomposition. To verify 
the effectiveness of the proposed method, the QR 
adaptive FDFD coefficients obtained by the proposed 
QR method are compared with the CG adaptive FDFD 
coefficients obtained by Xu et al. (2021b) based on 
numerical integration, CG optimization, and sequential 
initial value selection. In addition, the computational 
t imes required in both methods are compared. 
Meanwhile, the wavefield simulation results obtained 
by the proposed QR adaptive-coeffi  cient FDFD method 
are compared with those obtained by the CG adaptive-
coeffi  cient FDFD method reported by Xu et al. (2021b) 
for three typical 3D acoustic wave models, and the 
wavefi eld simulation times required by the two methods 
are compared.

Theory

Least-squares problem for the adaptive FDFD 
coeffi cients

In this paper, the proposed method for calculating 
the adaptive FDFD coefficients is illustrated based on 
the 3D acoustic wave equation. First, we consider the 
following 3D acoustic wave equation with no source in 
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the frequency domain:
   

2 2 2 2

2 2 2 2 0,P P PP
v x y z

 (1)

where P denotes the frequency-domain wavefield, v 
denotes the wave propagation velocity, and ω denotes 
the angular frequency.

According to Xu et al. (2021b), the adaptive-
coeffi  cient 27-point FDFD discretization of equation (1) 
with a general scheme can be expressed as follows:
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where Pm,n,l  and vm,n,l denote the wavefield and 
velocity at the point (x, y, z) = (m∆x, n∆y, l∆z), 
respectively, wpg 1 2,

xC n r r  denotes the correction term 
with adaptive coefficients, wpg / / (2 )xn x x v
denotes the NWPG along the x-direction, r1 = ∆x/∆y and 
r2 = ∆x/∆z denote the ratios of the 3D spatial grid sizes, 
and wpg 1 2, ( 1, ,7)x

i n r r i  denotes the adaptive 
FDFD coeffi  cients varying with the NWPG for the given   

r1 and r2.

To obtain the required adaptive FDFD coefficients, 
the following 3D plane-wave solutions along different 
discrete propagation angles are considered:

  
sin cos sin sin cos

0, , ,p q p q pi x y z
vP x y z P e  (3)

where P0 denotes a constant, 1i  denotes an 
imaginary unit, θp (p = 1,···,nθ) denotes the different 
angles between the z-axis and the direction of wave 
propagation, and ϕq (q = 1,···,nϕ) denotes the different 
angles between the x-axis and the projection of the wave 
propagation direction in the x–y plane. By substituting 
the plane-wave solutions with different discrete 
propagation angles into the adaptive-coefficient FDFD 
scheme in equation (2), the least-squares problem for 
the adaptive FDFD coefficients can be obtained by 
minimizing the substitution error as follows:
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where η̂  denotes the optimal solution to the least-squares 
problem. By arranging {θp, ϕq} in the order of fi rst ϕq and 
then θp, the discrete least-squares problem in equation (4) 
can be converted into a matrix–vector product form as 
follows:
   

7

2

wpg wpg 2
ˆ argmin ,x x

R
n n

η
η A η b  (5)

where wpg
xnA  is a coefficient matrix with nθ×nϕ rows 

and seven columns varying with wpg
xn , wpg

xnb  is a 

column vector of length nθ×nϕ varying with wpg
xn , and   

2  denotes the L2  norm of the vector.

Adaptive FDFD coefficients based on QR 
matrix decomposition

For the discrete least-squares problem in equation (5), 
a common solution method is to construct the following 
NE:

  wpg wpg wpg wpg ,T x x T x xn n n nA A η A b  (6)

where T  denotes the matrix transpose. However, because 
the condition number of wpg wpg

T x xn nA A is the square 

of the condition number of wpg
xnA  (Golub and Van 

Loan, 2013), the coefficient matrix wpg wpg
T x xn nA A

in equation (6) can be more ill-conditioned, which may 
cause the derived adaptive FDFD coefficients η to be 
unsmooth with respect to wpg

xn (Aghamiry et al., 2022). 
To solve this problem, Aghamiry et al. (2022) added a 
smooth regularization term about wpg

xn by jointly solving 
the adaptive FDFD coefficients with different wpg

xn ; 
however, the method requires solving a large system of 
overdeterministic linear equations, and Aghamiry et al. 
(2022) did not provide a specifi c approach to construct 
the corresponding smooth regularization term.

To s impl i fy  the  ca lcula t ion  of  the  adapt ive 
FDFD coefficients and improve the corresponding 
computational efficiency, this paper proposes a new 
method for calculating adaptive FDFD coefficients. 
Spec i f i ca l l y,  a cco rd ing  to  t he  t heo ry  o f  QR 
decomposition of matrices (Golub and Van Loan, 2013), 

the matrix wpg
xnA  can be decomposed as follows:

   
1 wpg

wpg wpg ,
x

x x n
n n

R
A Q

0
 (7)

w h e r e wpg
xnQ  i s  a n  o r t h o g o n a l  m a t r i x  w i t h 

nθ×nϕ rows and nθ×nϕ columns varying with wpg
xn

(i.e., 1
wpg wpg
x T xn nQ Q ), and 1 wpg

xnR  is an upper 
triangular matrix with seven rows and seven columns 
varying with wpg

xn . Because multiplying a vector by 
an orthogonal matrix does not change the L2 norm 
of the vector, the least-squares problem in equation 
(5) can be converted into the following form by 
multiplying wpg

T xnQ  from the left within the L2 norm:
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R
η η Q b

0
 (8)

Let the first seven columns of wpg
xnQ  form a 

submatrix 1 wpg
xnQ  , and then, the optimization problem 

in equation (8) can be simplifi ed as

  
7
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R
n n n

η
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B e c a u s e wpg 1 2, , , ( 1, ,7)x
jc n r r j  f o r m s  a 

linearly independent set of functions, wpg
xnA  is full 

column rank when {θp, ϕq} is sampled sufficiently. 
Then, 1 wpg

xnR  is a full-rank upper triangular matrix, so 
the optimization problem in equation (9) is equivalent to 
solving the following system of linear equations of order 
7:

  1 wpg 1 wpg wpg .x T x xn n nR η Q b  (10)

Because 1 wpg
xnR  is an upper triangular matrix, 

equation (10) can be solved quickly by the back 
substitution method (Golub and Van Loan, 2013).

When solving the adaptive FDFD coefficients with 
the proposed method, the part that is mainly diffi  cult and 
requires computational eff ort is the QR decomposition of 

the coeffi  cient matrix wpg
xnA  in equation (7). However, 

QR decomposition has been built in most current matrix 
libraries, such as MATLAB, the Eigen library of C++ 
(Rupp et al., 2016), and the NumPy library of Python 
(Harris et al., 2020), so the implementation of QR 
decomposition is actually easy.

According to Golub and Van Loan (2013), the number 
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of floating-point operations required for using QR 
decomposition to solve the least-squares problem for a 
matrix with M rows and N columns (M ≥ N) is less than 

2N2M+3N2M. Therefore, for the matrix wpg
xnA  with 

nθnϕ rows and seven columns, the number of floating-
point operations required for using QR decomposition 
to solve the corresponding least-squares problem and 
obtaining the adaptive FDFD coefficients is less than 
119nθnϕ. In contrast, for each iteration, the CG method 
adopted by Xu et al. (2021b) must calculate the double 
integral with respect to angle twice with the vector dot 
product in the integral term, so the required number of 
fl oating-point operations for obtaining the corresponding 
adaptive FDFD coefficients is greater than 44niternθnϕ, 
where niter represents the number of iterations of the CG 
method. Because the number of 3D adaptive FDFD 
coeffi  cients is 7, niter is usually greater than 7. Therefore, 
the number of floating-point operations required by 
the QR method is obviously smaller than that of the 
CG method. In addition, it is difficult for the existing 
methods to calculate the adaptive FDFD coefficients 
in parallel with respect to different wpg

xn . For example, 
the method by Xu et al. (2021b) must use the adaptive 
FDFD coefficients obtained at the larger wpg

xn as the 
initial values for the iterative solution of the adaptive 
FDFD coefficients at the smaller wpg

xn , whereas the 
method by Aghamiry et al. (2022) must jointly calculate 
the adaptive FDFD coefficients at different wpg

xn to 

impose a smooth regularization term on the adaptive 
FDFD coeffi  cients. In contrast, the method proposed in 
this paper can calculate the adaptive FDFD coeffi  cients 
at different   wpg

xn independently, and thus, the adaptive 
coefficients can be calculated in parallel with respect 
to wpg

xn .

 Meanwhile, because the orthogonal matrix wpg
xnQ

in the adopted QR decomposition can be represented by 
some Householder vectors, the memory requirement for 
obtaining the adaptive FDFD coeffi  cients using the QR 

decomposition of the matrix wpg
xnA  with nθnϕ rows and 

seven columns is less than the memory of  9nθnϕ double-
precision real numbers (Golub and Van Loan, 2013). 
Therefore, the memory requirement for obtaining the 
adaptive FDFD coeffi  cients using the QR decomposition 
is negligible compared to that for solving a 3D FDFD 
linear system.

Figure 1 provides the adaptive FDFD coefficients 
obtained by the CG method of Xu et al. (2021b), the 
NE method based on normal equation (6), and the 
QR method based on QR decomposition for the case 
where  r1 = r2 = 3, when both {θp} and {ϕq} are sampled 
within [0, π/2] with a sampling interval of π/180. The 
fi gure shows that the NE method cannot obtain smooth 
adaptive FDFD coefficients in this case, whereas the 
QR method proposed in this paper can obtain adaptive 
FDFD coeffi  cients as smooth as those of the CG method 
without imposing smoothness constraints.

Figure 1. Comparison of the adaptive fi nite-difference frequency domain coeffi cients calculated by different methods when r1 = 
3 and r2 = 3. (a) Conjugate gradient (CG) method based on numerical integration, CG optimization, and sequential initial value 

selection,  and (b) normal equation (NE) method based on NEs, and (c) QR method based on QR decomposition.
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Adaptive FDFD coeffi cient lookup table 
By the proposed QR method, we can quickly and 

parallelly calculate adaptive FDFD coefficients for 
diff erent wpg

xn ; however, for large 3D models, the method 
requires much additional computational time to calculate 
the coeffi  cients at every grid point. Similar to the existing 

methods for calculating adaptive FDFD coeffi  cients (Xu 
and Gao, 2018; Xu et al., 2021b; Aghamiry et al., 2022), 
the QR method can be combined with a lookup-table 
technique to reduce the computational time. Particularly, 
after r1 and r2 are determined for the given model, wpg

xn
is sampled between 0.001 and 0.05 with a sampling 



7

Xu et al.

interval of 0.001, and a lookup table is generated by 
parallelly calculating the adaptive FDFD coefficients 
corresponding to the sampled wpg

xn . Parts of the lookup 
tables of the adaptive FDFD coefficients obtained by 
the CG and QR methods for r1 = r2 = 3 are presented in 
Tables 1 and 2, respectively. The tables show that the 
adaptive FDFD coeffi  cients obtained by the QR and CG 
methods are consistent with each other. For wpg

xn absent 
in the lookup table, the corresponding adaptive FDFD 
coeffi  cients can be obtained by the linear interpolation of 

the lookup table (Xu et al., 2021b). As shown in Figure 
1, the adaptive FDFD coefficients obtained by the QR 
method are quite smooth, and hence, linear interpolation 
with an interval of 0.001 can achieve high accuracy. 
Evidently, from the subsequent numerical examples, 
the numerical wavefield obtained by the QR method 
is in good agreement with the analytic and reference 
solutions, which verifies the effectiveness of linear 
interpolation.

Table 1 Part of the lookup table of adaptive fi nite-difference frequency domain coeffi cients for the three-dimensional acoustic 
wave equations obtained by the conjugate gradient method (r1 = r2 = 3)

nwpg η1 η2 η3 η4 η5 η6 η7

0.05 ‒0.09625 ‒0.16604 ‒0.16601 0.00418 0.00416 0.03906 0.02000 
0.10 ‒0.09689 ‒0.16589 ‒0.16578 0.00424 0.00418 0.03867 0.02045 
0.15 ‒0.09804 ‒0.16564 ‒0.16539 0.00438 0.00424 0.03799 0.02122 
0.20 ‒0.10011 ‒0.16568 ‒0.16524 0.00478 0.00453 0.03714 0.02224 
0.25 ‒0.10332 ‒0.16623 ‒0.16555 0.00557 0.00514 0.03617 0.02352 
0.30 ‒0.10811 ‒0.16765 ‒0.16669 0.00695 0.00628 0.03511 0.02504 
0.35 ‒0.11442 ‒0.16981 ‒0.16855 0.00889 0.00789 0.03374 0.02693 
0.40 ‒0.12257 ‒0.17297 ‒0.17138 0.01156 0.01011 0.03193 0.02928 
0.45 ‒0.13304 ‒0.17753 ‒0.17562 0.01524 0.01319 0.02956 0.03217 
0.50 ‒0.14644 ‒0.18411 ‒0.18186 0.02034 0.01746 0.02645 0.03568 

Table 2 Part of the lookup table of adaptive fi nite-difference frequency domain coeffi cients for the three-dimensional 
acoustic wave equations obtained by the QR method (r1 = r2 = 3)

nwpg η1 η2 η3 η4 η5 η6 η7

0.05 ‒0.09362 ‒0.16351 ‒0.16348 0.00286 0.00285 0.03779 0.02066 
0.10 ‒0.09467 ‒0.16370 ‒0.16359 0.00312 0.00307 0.03757 0.02101 
0.15 ‒0.09647 ‒0.16406 ‒0.16381 0.00358 0.00345 0.03719 0.02162 
0.20 ‒0.09912 ‒0.16465 ‒0.16421 0.00428 0.00403 0.03662 0.02249 
0.25 ‒0.10277 ‒0.16558 ‒0.16491 0.00528 0.00486 0.03582 0.02367 
0.30 ‒0.10762 ‒0.16698 ‒0.16604 0.00667 0.00602 0.03475 0.02519 
0.35 ‒0.11394 ‒0.16908 ‒0.16784 0.00860 0.00762 0.03333 0.02709 
0.40 ‒0.12210 ‒0.17217 ‒0.17060 0.01126 0.00984 0.03145 0.02946 
0.45 ‒0.13260 ‒0.17666 ‒0.17476 0.01493 0.01291 0.02900 0.03236 
0.50 ‒0.14606 ‒0.18316 ‒0.18091 0.02002 0.01720 0.02579 0.03590 

x

x

To verify that the proposed QR method can calculate 
the adaptive FDFD coefficients more efficiently than 
the CG method adopted by Xu et al. (2021b), Table 
3 provides a comparison of the computational times 
required to generate the adaptive FDFD coefficient 
lookup tables using the CG and QR methods for 
different r1 and r2 , where the computational platform 
is a supercomputer CPU node (56 cores, 192 GB of 
memory, CPU type as Intel® Xeon® Gold 6258R 
Processor @2.7 GHz). Table 3 shows that compared 

to the CG method used by Xu et al. (2021b), the QR 
method proposed in this paper can substantially reduce 
the computational time required to calculate the adaptive 
FDFD coeffi  cients, especially when r1 and r2 are large.

Absorbing boundary with the adaptive FDFD 
coeffi cients

The adaptive FDFD coefficients in equation (2) are 
applied to the 3D acoustic wave equations with no source 
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and no boundary conditions, while practical wavefield 
simulations often require absorption boundaries to 
suppress boundary refl ections. On the basis of Xu et al. 
(2021b), where the adaptive FDFD coefficients were 
applied to the perfectly matched layer (PML) (Liu and 
Tao, 1997; Ren and Liu, 2013) absorbing boundary, this 
paper further applies the adaptive FDFD coeffi  cients to 
the complex-frequency-shifted PML (CFS-PML) that can 
better absorb the grazing incidence waves (Komatitsch 
and Martin, 2007; Xu et al., 2023) compared with the 
PML. For this purpose, the 3D acoustic wave equation 
with the source term and the CFS-PML absorbing 
boundary is given as follows:

Table 3 Comparison of the computational times (in seconds) 
required to generate the adaptive fi nite-difference frequency domain 
coeffi cient lookup tables by the conjugate gradient and QR methods 

for different r1 and r2 
r2 r2 CG method QR method
1 1 11 0.21
1 2 13 0.17
2 2 50 0.26
2 3 70 0.19
3 3 82 0.17
3 4 74 0.22
4 4 106 0.18
4 5 106 0.22
5 5 130 0.17
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where f (ω) denotes the source function, (xs, ys, zs) 
denotes the source location, δ (x) denotes the Dirac 
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0 maxln(1/ )3 / 2R v L  , R denotes the theoretical 
boundary reflection coefficient (taken as 10-3 in 
this paper), vmax denotes the maximum propagation 
velocity, Lτ denotes the thickness of the CFS-PML in 
the τ-direction,  denotes the distance from the inner 
computational region along the τ-direction, vmax = πf0, 
and f0 denotes the dominant frequency of the source. 
After discretizing equation (11) with virtual half-grid 

points and second-order fi nite diff erences and adding the 
correction term with the adaptive FDFD coeffi  cients in 
equation (2) (Xu et al., 2021b), the adaptive-coeffi  cient 
27-point FDFD of the 3D acoustic wave equation with 
the CFS-PML absorbing boundary and the source term is 
obtained as
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where wpg 1 2,
xC n r r  denotes the correction term with 

the adaptive FDFD coefficients in equation (2b), δm,n 
denotes the Kronecker function, and (ms,ns,ls) denotes 
the index of the source grid point.

Numerical examples

To verify the effectiveness of the adaptive FDFD 
coeffi  cients calculated by the proposed QR method, three 
typical 3D acoustic wave models are considered herein, 
and the wavefi eld simulation results obtained by the QR 
adaptive-coefficient FDFD method are compared with 
those obtained by the optimal 27-point FDFD method 
based on average-derivative method (ADM) (Chen, 
2014) and the CG adaptive-coefficient FDFD method 
(Xu et al., 2021b). For all the following examples, 30 
supercomputer CPU nodes (56 cores, 192 GB memory, 
CPU type: Intel® Xeon® Gold 6258R Processor @2.7 
GHz) were used as the computational platform. The 
simulations of the wavefield components at different 



9

Xu et al.

frequencies were performed in parallel on different 
nodes through the message-passing interface.

Wavefield simulation of a 3D homogeneous 
model

We considered a homogeneous model with the number 
of grid points being 61×61×61; a model velocity of 2000 
m/s; CFS-PML absorbing boundary layers of 10, 20, 
and 30 along the x-, y-, and z-directions, respectively; 
and grid sizes of ∆x = 33 m, ∆y = 16.5 m, and ∆z = 11 
m. The source was a Ricker wavelet with a dominant 
frequency of 10 Hz and placed at the center of the 
model. Further, the maximum simulated frequency 
was 30 Hz, and the frequency sampling interval was 1 
Hz. The frequency-domain seismogram was converted 
into a time domain wherein the maximum time of 
conversion was 1 s and the time sampling interval was 
1 ms. The receivers were placed from (x, y, z) = (0 m, 
495 m, 0 m) to (x, y, z) = (990 m, 495 m, 0 m) along the 

x-direction. The CG adaptive FDFD coeffi  cients (Xu et 
al., 2021b), NE adaptive FDFD coefficients based on 
NEs, and QR adaptive FDFD coeffi  cients based on QR 
decomposition used in this model are shown in Figure 2. 
Figure 3 shows the time-domain seismograms obtained 
by the ADM optimal 27-point FDFD, CG adaptive-
coefficient 27-point FDFD, NE adaptive-coefficient 
27-point FDFD, and QR adaptive-coefficient 27-point 
FDFD methods. Figure 4 shows the analytic solution 
(Chen, 2012) and single-trace time-domain seismograms 
at (x, y, z) = (0 m, 495 m, 0 m) obtained by the four 
aforementioned FDFD methods. Figure 2 shows that for 
this homogeneous model, the proposed QR method can 
obtain smooth adaptive FDFD coefficients comparable 
to those obtained by the CG method without imposing 
smoothness constraints; however, smooth adaptive 
FDFD coeffi  cients are not obtained by the NE method. 
Figures 3 and 4 show that the accuracies of the wavefi eld 
simulation by the QR and CG adaptive-coefficient 

Figure 2. Adaptive fi nite-difference frequency domain (FDFD) coeffi cients corresponding to the three-dimensional homogeneous 
model (r1 = 2, r2 = 3). (a) Conjugate gradient adaptive FDFD coeffi cients (Xu et al., 2021b), (b) normal equation adaptive FDFD 

coeffi cients, and (c) QR adaptive FDFD coeffi cients.

Figure 3. Seismograms obtained by different methods for the three-dimensional homogeneous model. (a) ADM optimal 27-point 
fi nite-difference frequency domain (FDFD) method, (b) conjugate gradient adaptive-coeffi cient 27-point FDFD method, (c) normal 

equation adaptive-coeffi cient 27-point FDFD method, and (d) QR adaptive-coeffi cient 27-point FDFD method.
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FDFD methods are identical, and both can effectively 
reduce the wavefield simulation error of the ADM 
optimal 27-point FDFD method; however, reasonable 
wavefi eld simulation results are not obtained by the NE 
adaptive-coefficient FDFD method. Further, the total 
computational durations of the CG and QR adaptive-
coefficient FDFD methods on 30 supercomputer nodes 

were 146 and 86 s, respectively, when the PARDISO 
direct solver (Petra et al., 2014a, 2014b) was used for 
solving the sparse linear equation system of FDFD. 
Therefore, for this homogeneous model, the QR 
adaptive-coeffi  cient FDFD method proposed herein can 
considerably reduce the computational time compared 
with the CG counterpart.

Figure 4. Analytic solution and single-trace seismograms obtained by ADM optimal 27-point fi nite-difference frequency domain 
(FDFD), conjugate gradient adaptive-coeffi cient 27-point FDFD, normal equation adaptive-coeffi cient 27-point FDFD, and QR 

adaptive-coeffi cient 27-point FDFD methods for the three-dimensional homogeneous model. Comparison of (a) amplitudes and (b) 
amplitude differences.
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Wavefi eld simulation of a 3D layered model
We considered a 3D two-layer model with grid points 

of 61 × 61 × 121, an identical thickness for the two 
velocity layers, constant velocities of 2000 and 4000       
m/s for the fi rst and second layers, respectively, and 10, 
10, and 20 CFS-PML absorbing-boundary layers along 
the x-, y-, and z-directions, respectively. The grid sizes 
were ∆x = 33 m, ∆y = 33 m, and ∆z = 16.5 m. Further, 
the source was a Ricker wavelet with a dominant 
frequency of 10 Hz and was placed at (x, y, z) = (990 m, 
990 m, 165 m), the maximum simulated frequency was 
30 Hz, and the frequency sampling interval was 0.5 Hz. 
The maximum time required to convert the frequency-
domain seismogram into the time domain was 2 s, and 
the time sampling interval was 1 ms. The receivers were 
placed along the horizontal line of the x-direction at 

y = 990 m and z = 0 m. This model used a high-order 
FDFD (72nd order in the x- and y-directions and 12th 
order in the z-direction) as the reference solution for the 
wavefi eld simulation (Xu et al., 2021a), and the number 
of orders was selected by referring to the error analysis of 
fi nite diff erences of diff erent orders for diff erent NWPGs 
reported by Zhang and Yao (2013). Figure 5 shows the 
CG adaptive FDFD coefficients (Xu et al., 2021b) and 
QR adaptive FDFD coefficients corresponding to this 
model. Figure 6 shows wavefield snapshots at 0.75 
s obtained by the ADM optimal 27-point FDFD, CG 
adaptive-coefficient 27-point FDFD, and QR adaptive-
coefficient 27-point FDFD methods and the reference 
solution. Figure 7 shows the seismograms obtained by 
the four aforementioned methods. Figure 8 shows the 
single-trace time-domain seismograms obtained at (x, 
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Figure 5. (a) Conjugate gradient adaptive fi nite-difference frequency domain (FDFD) coeffi cients (Xu et al., 2021b) and (b) QR 
adaptive FDFD coeffi cients corresponding to the three-dimensional layered model (r1 = 1 and  r2 = 2).

Figure 6. Wavefi eld snapshots obtained by different methods for the three-dimensional layered model at 0.75 s. (a) ADM optimal 
27-point fi nite-difference frequency domain (FDFD) method, (b) conjugate gradient adaptive-coeffi cient 27-point FDFD method, 
(c) QR adaptive-coeffi cient 27-point FDFD method, and (d) reference solution (high-order FDFD with 72nd order in the x- and 

y-directions and 12th order in the z-direction).
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y, z) = (0 m, 990 m, 0 m) by the reference solution and 
the other three FDFD methods. Figures 6–8 show that 
for the 3D layered model, the wavefield simulation 
accuracies of the QR and CG adaptive-coeffi  cient FDFD 

methods are identical, and both can effectively reduce 
the wavefi eld simulation error compared with the ADM 
optimal 27-point FDFD method. The total computational 
times of the CG and QR adaptive-coefficient FDFD 
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methods on 30 supercomputer nodes were found to 
be 211 and 200 s, respectively, when the PARDISO 
direct solver was used for solving the FDFD sparse 
linear equations. Therefore, for the layered model, the 

proposed QR adaptive-coefficient FDFD method can 
reduce the required computational time of the existing 
CG counterpart.

Figure 8. Comparison of the single-trace seismograms obtained by ADM optimal 27-point fi nite-difference frequency domain 
(FDFD), conjugate gradient adaptive-coeffi cient 27-point FDFD, and QR adaptive-coeffi cient 27-point FDFD with the reference 

solution (high-order FDFD with 72nd order in the x- and y-directions and 12th order in the z-direction) for the three-dimensional 
layered model. Comparison of (a) amplitudes and (b) amplitude differences.

Figure 7. Seismograms obtained by different methods for the three-dimensional layered model.
(a) ADM optimal 27-point fi nite-difference frequency domain (FDFD) method, (b) conjugate gradient adaptive-coeffi cient 27-point 
FDFD method, (c) QR adaptive-coeffi cient 27-point FDFD method, and (d) reference solution (high-order FDFD with 72nd order in 

the x- and y-directions and 12th order in the z-direction).
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Wavefi eld simulation of a 3D SEG/EAGE salt-
dome model

A 3D SEG/EAGE salt-dome model with a number of 
grid points of  226×226×67 was considered. The number 
of CFS-PML absorbing boundary layers along each side 

of the x-, y-, and z-directions was 10, and the grid sizes 
were ∆x = ∆y = ∆z = 60 m. A 3D slice of this model is 
given in Figure 9. The source was a Ricker wavelet with 
a dominant frequency of 4 Hz and was placed at (x, y, z) 
= (6720 m, 6720 m, 600 m). The maximum frequency 
simulated was 12 Hz with a frequency sampling interval 
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Figure 10. (a) Conjugate gradient adaptive fi nite-difference frequency domain (FDFD) coeffi cients (Xu et al., 2021b) and (b) QR 
adaptive FDFD coeffi cients corresponding to the three-dimensional SEG/EAGE salt-dome model (r1 = 1 and r2 = 1).

of 0.1 Hz, and the maximum time of conversion of the 
frequency-domain seismogram into the time domain was 
10 s with a time sampling interval of 5 ms. The receivers 
were placed along the horizontal line of the x-direction 
at y = 6720 m and z = 600 m. This model used a high-
order FDFD (72nd order in the x-, y-, and z-directions) 
as the reference solution for the wavefield simulation 
(Xu et al., 2021a). The CG adaptive FDFD coeffi  cients 
(Xu et al., 2021b) and QR adaptive FDFD coefficients 
corresponding to the model are given in Figure 10. The 

Figure 9. Slice of the three-dimensional SEG/EAGE salt-dome 
model.
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frequency-domain slices at 10 Hz obtained by the ADM 
optimal 27-point FDFD, the CG adaptive-coefficient 
27-point FDFD, the QR adaptive-coefficient 27-point 
FDFD, and the reference solution are given in Figure 11. 
Figure 12 provides the vertical single-trace comparison 
of the frequency-domain slices in Figure 11 at x = 13500 
m and y = 13500 m. Figure 13 provides a comparison 
of the received time-domain seismograms for the four 
methods. Figures 11–13 show that for the 3D salt-dome 
model, the wavefield simulation accuracies of the QR 
adaptive-coeffi  cient FDFD and CG adaptive-coeffi  cient 
FDFD are the same, and both can eff ectively reduce the 
wavefi eld simulation error of the ADM optimal 27-point 
FDFD. In addition, the total computational times of the 
CG adaptive-coefficient FDFD and the QR adaptive-
coefficient FDFD were 2374 and 2317 s, respectively, 
when the FDFD sparse linear system was iteratively 
solved by the flexible generalized minimal residual 
method with preconditioning of the adaptive complex 
frequency and geometric multigrid (Xu et al., 2021a) 
on the 30 supercomputer nodes. Therefore, for this 
salt-dome model, the QR adaptive-coefficient FDFD 
proposed in this paper can reduce the computational time 
required by the existing CG adaptive-coeffi  cient FDFD.
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Figure 11. Monochromatic slices obtained by different methods for the three-dimensional SEG/EAGE salt-dome model at 10 Hz. 
(a) ADM optimal 27-point fi nite-difference frequency domain (FDFD) method, (b) conjugate gradient adaptive-coeffi cient 27-point 
FDFD method, (c) QR adaptive-coeffi cient 27-point FDFD method, and (d) reference solution (high-order FDFD method with 72nd 

order in the x-, y-, and z-directions). The red arrows indicate the regions where the differences are more obvious.

Figure 12. Comparison of the vertical single traces of the single-frequency slices (x = 13500 m and y = 13500 m) of the salt-dome 
model at 10 Hz between the reference solution (high-order fi nite-difference frequency domain (FDFD) method with 72nd order in 
the x-, y-, and z-directions) and the results obtained by the ADM optimal 27-point FDFD, conjugate gradient adaptive-coeffi cient 

27-point FDFD, and QR adaptive-coeffi cient 27-point FDFD methods for the three-dimensional SEG/EAGE salt-dome model. 
Comparison of (a) amplitudes and (b) amplitude differences.
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Figure 13. Time-domain seismograms obtained by different methods for the three-dimensional SEG/EAGE salt-dome model. (a) 
ADM optimal 27-point fi nite-difference frequency domain (FDFD) method, (b) conjugate gradient adaptive-coeffi cient 27-point 

FDFD method, (c) QR adaptive-coeffi cient 27-point FDFD method, and (d) reference solution (high-order FDFD method with 72nd 
order in the x-, y-, and z-directions). The red arrows indicate the regions where the differences are more obvious.

Conclusions

Herein, a novel method for calculating adaptive 
FDFD coefficients based on QR decomposition is 
proposed. The method can avoid the requirement of 
numerical integration, CG optimization, sequential 
initial value selection, and smooth regularization 
involved in the existing methods for calculating adaptive 
FDFD coefficients. The comparison of computational 
times required for generating the adaptive-coefficient 
lookup tables reveals that the proposed QR method 
can significantly improve the efficiency of calculating 
adaptive FDFD coefficients compared with the 
CG methods based on numerical integration, CG 
optimization, and sequential initial value selection. 
The numerical wavefield simulation results of the 3D 
homogeneous model, layered model, and SEG/EAGE 
salt-dome model show that the adaptive-coefficient 
FDFD method based on QR decomposition can achieve 
accuracy identical to that of the adaptive-coefficient 
FDFD method based on CG optimization while requiring 
less computational time. The key concept underlying 
the proposed method is the use of QR decomposition to 
solve the discrete linear least-squares problem obtained 
by substituting plane-wave solutions into the FDFD 
scheme. This method can be generalized to determine 
the adaptive FDFD coefficients of viscoacoustic and 
elastic wave equations. Since the proposed QR method 
of calculating adaptive FDFD coefficients is easy to 
implement and has high computational efficiency, it is 
anticipated to promote further practical applications of 
adaptive-coeffi  cient FDFD methods in seismic wavefi eld 
simulations.
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