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Preface

Wave propagation in all fluid and solid matter is always accompanied by attenuation and
dispersion in a broad range of frequencies and scales from free oscillations of the entire
Earth to ultrasound in small rock samples (Aki and Richards, 2002). Attenuation is the
exponential decay of wave amplitude with propagation distance; dispersion is a variation of
propagation velocity with frequency. Attenuation and dispersion can be caused by a variety
of physical phenomena that can be divided broadly into two main classes: elastic processes,
where the total energy of the wavefield is conserved (scattering of the waves by randomly
distributed inhomogeneities), and inelastic dissipation (internal friction), where wave
energy is converted into heat (see, e.g., Sato et al., 2012). In fluid-saturated porous media,
the most common cause of internal friction is wave-induced motion of the fluid relative
to the solid frame. Often, this phenomenon is termed wave-induced fluid flow (WIFF) or,
perhaps more accurately, wave-induced fluid-pressure relaxation. Understanding of the
fluid-related dissipation, combined with improved measurements of attenuation and/or
dispersion from experimental data, can be useful for a number of applications, such as
estimation of hydraulic properties of rocks. Dissipation-related seismic attributes already
are employed in seismic interpretation and reservoir characterization, but to date their
use has been mostly empirical and qualitative (see, e.g., Castagna et al., 2003; Rapoport
et al., 2004; Hermana et al., 2014; Li et al., 2016). Theoretical models of frequency-
dependent attenuation and dispersion may help develop quantitative attributes, which can
be calibrated against well logs and laboratory measurements. Such theoretical models are
the subject of this book.

The first description of attenuation and dispersion due to WIFF probably should be
credited to prominent Russian physicist Jacob Frenkel (Frenkel, 1944). Subsequently, his
theoretical analysis has been expanded in a series of papers by Belgian-American physicist
Maurice A. Biot (Biot, 1956a,b, 1962a,b). The Biot theory of dynamic poroelasticity is
based on his earlier analysis (Biot, 1941) of quasi-static deformation of fluid-saturated
porous media, which in turn is an extension to porous media with an elastic frame of the
concepts of soil mechanics developed by Karl von Terzaghi and his followers in 1920s and
1930s (see, e.g., Terzaghi, 1943). The dispersion/attenuation mechanism described by the
Biot theory is caused by pressure relaxation between peaks and troughs of a passing wave,
which, in turn, occurs due to the density differences between the solid frame and the pore
fluid. When the fluid is inviscid, application of the same pressure to the medium results

xiii



xiv PREFACE

in different particle velocities in the solid and fluid, and longitudinal waves propagating
in the matrix and fluid (known as fast and slow waves, respectively) with no dissipation
or dispersion. In the fast wave, the fluid and solid motion is almost in-phase, and in the
slow wave out-of-phase. When the fluid is viscous, attenuation is very high in the slow
wave (especially at low frequencies) and relatively low in the fast wave – but nonzero due
to some small motion of the fluid relative to the solid.

To visualize this phenomenon, consider a solid pipe filled with a viscous fluid being
shaken back and forth in the axial direction. If the fluid is inviscid, it should have remained
stationary. But if the fluid is very viscous, it will be dragged along by viscous forces, but it
will lag behind the solid pipe, creating relative motion and hence energy dissipation. The
same phenomenon occurs in a porous medium, although the tortuous pore space results
in additional inertial coupling between the solid and fluid motion.

This dissipation mechanism often is called global or macroscopic flow because it occurs
on the scale of a wavelength, which, at frequencies below 1 MHz, is much larger than an
individual pore size. The slow compressional wave predicted by the Biot theory is observed
experimentally by Plona (1980) but most relevant for many applications is attenuation and
dispersion of the fast compressional wave.

The development of the Biot theory of poroelasticity in the 1950s and 1960s provided a
solid understanding as to how the presence of fluids in the pore space of a rock can cause
attenuation and dispersion. This was exciting for many applications, such as petroleum
geophysics, as attenuation and dispersion potentially could become useful attributes for
seismic exploration (it is worth noting that Biot developed the poroelasticity theory while
working for the oil giant Shell). However, it soon became apparent that the attenuation and
dispersion predicted by the poroelasticity theory was prominent only at frequencies of 100
kHz or higher, and negligibly small at seismic (10–100 Hz) and sonic (100–10,000 Hz)
frequencies. Furthermore, progress in laboratory measurements and field observations in
the 1970s, both in ocean acoustics and borehole seismic methods, showed that measured
attenuation of seismic and acoustic waves at frequencies between 10 Hz and 10 kHz was
one to two orders of magnitude higher than the poroelasticity predictions.

This discrepancy has prompted a quest to find other mechanisms of dissipation. One
approach is to include these mechanisms as an additional attenuation in the rock frame,
making it viscoelastic. Apparently, the first to propose such an approach is Stoll and
Bryan (1970). Over the decades, this approach has experienced various extensions and
refinements (see, e.g., Carcione, 2022). While this approach cannot shed light on the
physics of attenuation and dispersion, sometimes it is useful in modeling the observations.

Furthermore, also realized in the 1970s is the idea that the global flow alone does
not account for all of the WIFF effects in porous rocks. In particular, if a rock has
heterogeneities smaller than the wavelength, a passing wave will create pressure gradients
on a length scale of these heterogeneities. This, in turn, will cause fluid flow relative
to the solid, and hence attenuation and dispersion. Depending on the actual scale of the
heterogeneities, we can distinguish between mesoscopic flow and local flow. Mesoscopic
flow is caused by heterogeneities having a length scale is much smaller than the wavelength
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but much larger than the typical pore size. When a porous medium with mesoscopic
heterogeneities is compressed by a passing wave, the fluid will tend to flow (squeeze out)
from more compliant into stiffer regions, and the flow will cause dissipation due to viscous
friction.

Local flow, also known as squirt flow, is similar in nature but occurs on the pore scale.
If pores have irregular shapes and orientations (which is almost always the case), they
have different compliances. Under compression, the more compliant pores will deform
to a greater extent and will squeeze the fluid into stiffer pores. The physical natures
of mesoscopic and squirt flow are quite similar, but the geometry and mathematical
formulations often are very different.

This book aims to give the reader a detailed description of all of the dissipation
mechanisms caused by fluid-pressure relaxation (on macroscopic, mesoscopic, and pore
scales). For each mechanism, we strive to describe its physics, theoretical models, and
experimental evidence for the physical mechanisms and models. The choice of models
reflects the authors’ interests and is based in large part on the work of the authors, their
research students, and co-workers. The focus of the book is on theory; experimental
examples are chosen to illustrate the physics and theoretical models and are far from
comprehensive. A complete analysis of experimental data on attenuation and dispersion
in porous materials will perhaps require another book.

The structure of the book is as follows. Chapter 1 introduces the concept of
internal friction and gives its theoretical description through the theory of viscoelasticity,
which underpins the concepts of dispersion and attenuation. The chapter introduces the
theoretical description of viscoelastic media, discusses classical rheological models, and
defines the key quantities governing mechanical deformation and wave propagation in
these media, such as moduli, compressional and shear wave velocities, and attenuation
and dissipation factors. Also introduced here are mathematical concepts of complex-
valued moduli and velocities, which are useful for a mathematical description of waves
in dissipative media. The theory of viscoelasticity is a classical subject covered in many
books; hence, this chapter is introductory in nature and focuses on the main concepts and
definitions necessary for subsequent chapters.

The Biot theory of dynamic poroelasticity is the subject of Chapter 2. The theory
is well established and covered in a number of books, e.g., Nikolaevskiy et al. (1970),
Bourbié et al. (1987), Allard and Atalla (2009), Coussy (2011), Carcione (2022), and
Cheng (2016). The purpose of this chapter is three-fold: to give a detailed description
of the global-flow mechanism described by this theory, to illustrate this mechanism with
experimental data, and to present field equations and constitutive equations, which are
employed in subsequent chapters to develop mathematical models of other attenuation
mechanisms that occur in porous media with strong spatial heterogeneity. Note that,
strictly speaking, unique among the mechanisms discussed in this book, the global-flow
dissipation described by the Biot theory cannot be described within the framework of
viscoelasticity (Chapter 1). Indeed, a mathematical description of global-flow dissipation
requires the inertial terms in the equations of poroelasticity, and thus cannot be described
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by a quasi-static viscoelastic relaxation.
Attenuation and dispersion caused by fluid-pressure relaxation on the mesoscale is

covered in Chapters 3 to 5. The concept of mesoscopic pressure relaxation has been
developed in two papers by J. E. White and co-workers (White et al., 1975; White, 1975).
In many natural and artificial porous media, mesoscopic flow can occur on a wide range of
scales from the largest pore size to the smallest wavelength, and thus can cause attenuation
in a broad range of frequencies. Therefore, mesoscopic flow increasingly is believed to
be a key mechanism of fluid-related attenuation in the seismic exploration frequency
band (Pride et al., 2004). To cause significant attenuation and dispersion, the degree of
heterogeneity, that is, the contrast between elastic properties of different portions of the
rock, must be relatively large. There are a number of scenarios where this is manifestly the
case. The two most obvious scenarios, which have received substantial attention in recent
years, are partially saturated media and fractured porous media. Chapter 3 introduces the
concept of mesoscopic relaxation and gives a systematic description of attenuation and
dispersion in media with both periodic and randomly distributed inhomogeneities. The
models described in this chapter are generic, in a sense that the medium can be spatially
inhomogeneous in any of its properties, such as porosity, frame moduli, or pore fluid
modulus.

Chapter 4 focuses on a particular case of mesoscopic relaxation where only the pore-
fluid properties vary on the mesoscale while the solid frame properties are all spatially
uniform. If two immiscible pore fluids with substantially different fluid bulk moduli (such
as liquid and gas) occupy mesoscopic-scale clusters of pores, significant wave attenuation
and dispersion may occur due to the buildup of pressure gradients between these clusters.
The complete pressure equilibration between the two fluids requires the frequency to be
sufficiently low so that the characteristic length of fluid-pressure diffusion in the pore space
is large compared to the largest spatial scale of fluid mixing. If the frequency is higher, the
pressure in the two fluids will not have sufficient time to equilibrate within a half-period of
the wave, resulting in a higher bulk modulus and wave velocity. Hence, the presence of two
fluids in the pores causes significant dispersion and attenuation of elastic waves, which
is related to the relaxation of pore-fluid pressures. The frequency dependence of wave
velocity and attenuation in a partially saturated medium is controlled by the size, shape,
and spatial distribution of fluid pockets, and the permeability and elastic moduli of the solid
frame, as well as the properties of the two fluids. Compared to general inhomogeneous
porous media, partially saturated media with a uniform frame allow for more tractable
theoretical analysis and, no less importantly, for controlled experiment (i.e., it is easier
to control the fluid saturation in a porous medium than to control its porosity). Partially
saturated media are also of significant practical importance, particularly for geophysical
exploration and monitoring of hydrocarbon reservoirs, or for monitoring CO2 injection
into porous rocks.

A strong degree of heterogeneity is also typical of fractured reservoirs such as tight sands
and carbonates, where compliant mesoscopic fractures embedded in a porous rock mass
play a crucial role as flow conduits (Nelson, 2001). During the compression wave cycle,
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there is WIFF from compliant fractures into the porous background medium and vice versa
during the dilatational wave cycle. If the fractures are aligned in space, then fluid-pressure
relaxation between pores and fractures will cause frequency-dependent anisotropy. Seismic
characterization of fracture sets is an important aspect of reservoir characterization,
and therefore attenuation due to wave-induced flow and associated frequency-dependent
anisotropy have attracted considerable research interest. These phenomena are covered in
Chapter 5.

Pore-scale stress relaxation is the subject of Chapters 6 and 7. The concept of local (or
squirt) flow, corresponding to pore-scale relaxation of fluid pressure between various pores
and cracks of different shapes and orientations, is foreshadowed by Biot (1962b) and then
developed by Mavko and Nur (1975) and O’Connell and Budiansky (1977). Chapter 6
is focused on pore-scale relaxation of pore-fluid pressure between more compliant voids
(cracks, grain-to-grain contacts) and relatively stiff pores. When the rock is compressed,
much greater pressure builds up in compliant than stiff pores, resulting in a fluid-pressure
gradient, local fluid flow, and dissipation. Similarly to the case in mesoscopic relaxation,
when the frequency is low, the fluid pressure has sufficient time to equalize within one
half-period of the wave, and hence the compliant pores remain compliant. Conversely,
at high frequencies, there is insufficient time for the pressure to equalize, and hence the
pores that are compliant in the dry state become much stiffer. Therefore, materials with
a binary pore structure exhibit significant moduli and velocity dispersion. At the same
time, the presence of compliant pores is responsible for the dependence of elastic wave
velocities on static pressure. Thus, substantial reduction of the pore compliance at high
(e.g., ultrasonic) frequencies results in much weaker pressure dependence. This effect can
be demonstrated by a much stronger dependence of the bulk modulus on the static pressure
at seismic than ultrasonic frequencies.

Attenuation may be even stronger in porous media whose pores are filled with
viscoelastic substances such as heavy oil/bitumen. At low frequencies (and/or high
temperatures), the pore fill is in a liquid state, the fluid pressure is equalized between
compliant and stiff pores, and the rock is relatively soft. But at high frequencies
(or low temperatures), the pore fill is near-solid, and obviously cannot flow, making
previously compliant pores very stiff and causing strong dispersion. Analysis of elastic
and viscoelastic properties of porous media filled with solid and viscoelastic substances
is the subject of Chapter 7. Although a porous medium whose pores contain an elastic
substance is itself elastic and does not exhibit any dissipation, its effective moduli can
be described with the same approach as employed to describe the squirt-flow relaxation
(Chapter 6). Moreover, using the general elastic/viscoelastic correspondence principle
(Chapter 1), the result for a solid-filled medium can be extended to porous media saturated
with viscoelastic substances, which can exhibit very large attenuation and dispersion.

Finally, Chapter 8 shows that complex-valued moduli (which describe attenuation
and dispersion) of fluid-saturated porous media must lie within rigorous bounds. These
bounds are a particular case of more general bounds derived by Gibiansky and Milton
(1993), Milton and Berryman (1997), and Gibiansky et al. (1999) for two-phase mixtures
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of viscoelastic substances. The derivation presented in Chapter 8 shows that, for fluid-
saturated porous media, the bounds for both bulk and shear moduli are semicircles in the
complex plane, with the diameter being the segment of the real axis between the nominal
Hashin–Shtrikman bounds for a porous medium saturated with an inviscid fluid. We also
show that these bounds are independent of frequency and realizable – that is, for every
modulus value within the bounding region, there exists a geometry of the porous material
for which the modulus equals this value.

The book also contains two appendices. Appendix A gives a condensed summary
of effective medium theories for elastic and viscoelastic composites. We cover both
deterministic and statistical models, and both static and dynamic effective properties.
The material is presented in a handbook style and is referenced throughout the book.
Appendix B gives a detailed summary of the main methods for measuring attenuation
and dispersion in the laboratory. A basic knowledge of these methods is necessary for
understanding experimental data presented in various chapters.

In our research on dispersion and attenuation, we have drawn inspiration from a number
of outstanding individuals. In particular, Boris Gurevich is indebted to his mentor Sergey
Lopatnikov, who introduced him to the fascinating world of dynamic poroelasticity and
inspired his passion for asymptotic analysis and closed-form solutions. Gurevich also
expresses his gratitude to Vladimir Rok, the late Sergey Goldin, and the late Michael
A. Schoenberg, whose inspiration and encouragement was essential in early years of his
research career, and to Vladimir Ivanov and Serge Shapiro, whose encouragement and
support helped bring the project to completion.

While we have aspired to cover the subject comprehensively, the choice of material
reflects our own philosophy and research interests. As such, the material in the book
is largely based on our own studies, most of which were performed and published in
collaboration with a number of colleagues and research students, in particular, Miroslav
Brajanovski, Eva Caspari, Radim Ciz, Olivia Collet, Osni de Paula, Boye Fu, Robert
Galvin, Stas Glubokovskikh, Florian Karpfinger, Li-Yun Kong, Gracjan Lambert, Dina
Makarynska, Vassili Mikhaltsevitch, Tobias M. Müller, Marina Pervukhina, Yongyang
Sun, Julianna Toms, Alexey Yurikov, and Vadim Zyrianov. Contribution of all these
individuals is gratefully acknowledged.

We are especially grateful to colleagues who wrote several sections directly for the
book: Yuki Kobayashi (Section 4.8), Qiaomu Qi (Section 4.10), Junxin Guo (Sections 5.4
and 5.5), Valery M. Levin (Sections A.3.1 and A.3.3), and Angus Best (Sections B.1
and B.2).

The book also has benefited substantially from insightful technical discussions with
many colleagues over the years, in particular, Yury Alkhimenkov, Christoph Arns, Ludmila
Adam, Jean-Louis Auriault, Jing Ba, Ran Bachrach, Andrey Bakulin, Jyoti Behura, Yves
Bernabe, Angus Best, Claude Boutin, Mark Chapman, Jack Dvorkin, Arcady Dyskin,
Deniz Ertas, Li-Yun Fu, Jerome Fortin, Stephan Gelinsky, Toncheng Han, Ian Jackson,
David L. Johnson, Gary Mavko, Victor Nikolaevskiy, Konstantin Osypov, Elena Pasternak,
Steve Pride, J. German Rubino, Beatriz Quintal, Erik Saenger, Nishank Saxena, Colin
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